Design, Synthesis, and Structure−Activity Relationship of a Novel Series of 2-Aryl 5-(4-Oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1 Entry Inhibitors
摘要:
We previously identified two small molecules targeting the HIV-1 gp41, N-(4-carboxy-3-hydroxy)phenyl-2,5-dimethylpyrrole 12 (NB-2) and N-(3-carboxy-4-chloro)phenylpyrrole 13 (NB-64), that inhibit HIV-1 infection at low micromolar levels. Oil the basis of molecular docking analysis, we designed a series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans. Compared with 12 and 13, these compounds have bigger molecular size (437-515 Da) and could occupy more space in the deep hydrophobic pocket oil the gp41 NHR trimer. Fifteen 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans (11a-o) were synthesized by Suzuki-Miyaura cross-coupling followed by a Knoevenagel condensation and tested for their anti-HIV-1 activity and cytotoxicity on MT-2 cells. We found that all 15 compounds had improved anti-HIV-1 activity and 3 of them (11a, 11b, and 11d) exhibited inhibitory activity against replication of HIB-1(IIIB) and 94UG103 at < 100 nM range, more than 20-fold more potent than 12 and 13, suggesting that these Compounds can serve as leads for development of novel small molecule HIV fusion inhibitors.
Design, Synthesis, and Structure−Activity Relationship of a Novel Series of 2-Aryl 5-(4-Oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1 Entry Inhibitors
摘要:
We previously identified two small molecules targeting the HIV-1 gp41, N-(4-carboxy-3-hydroxy)phenyl-2,5-dimethylpyrrole 12 (NB-2) and N-(3-carboxy-4-chloro)phenylpyrrole 13 (NB-64), that inhibit HIV-1 infection at low micromolar levels. Oil the basis of molecular docking analysis, we designed a series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans. Compared with 12 and 13, these compounds have bigger molecular size (437-515 Da) and could occupy more space in the deep hydrophobic pocket oil the gp41 NHR trimer. Fifteen 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans (11a-o) were synthesized by Suzuki-Miyaura cross-coupling followed by a Knoevenagel condensation and tested for their anti-HIV-1 activity and cytotoxicity on MT-2 cells. We found that all 15 compounds had improved anti-HIV-1 activity and 3 of them (11a, 11b, and 11d) exhibited inhibitory activity against replication of HIB-1(IIIB) and 94UG103 at < 100 nM range, more than 20-fold more potent than 12 and 13, suggesting that these Compounds can serve as leads for development of novel small molecule HIV fusion inhibitors.
A substructure similarity search against the SPECS database and chemical synthesis methods were performed to obtain a series of pyrazolidine-3,5-dione derivatives. Through the enzyme-based assay against c-Met kinase, 4 compounds (1c, 1e, 1m and 1o) showed potential inhibitory activity, with IC50 values mostly less than 10 μM. Based on the structure–activity relationship (SAR) and binding mode analysis
Design, Synthesis, and Structure−Activity Relationship of a Novel Series of 2-Aryl 5-(4-Oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1 Entry Inhibitors
作者:Alan R. Katritzky、Srinivasa R. Tala、Hong Lu、Anatoliy V. Vakulenko、Qi-Yin Chen、Jothilingam Sivapackiam、Keyur Pandya、Shibo Jiang、Asim K. Debnath
DOI:10.1021/jm900450n
日期:2009.12.10
We previously identified two small molecules targeting the HIV-1 gp41, N-(4-carboxy-3-hydroxy)phenyl-2,5-dimethylpyrrole 12 (NB-2) and N-(3-carboxy-4-chloro)phenylpyrrole 13 (NB-64), that inhibit HIV-1 infection at low micromolar levels. Oil the basis of molecular docking analysis, we designed a series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans. Compared with 12 and 13, these compounds have bigger molecular size (437-515 Da) and could occupy more space in the deep hydrophobic pocket oil the gp41 NHR trimer. Fifteen 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans (11a-o) were synthesized by Suzuki-Miyaura cross-coupling followed by a Knoevenagel condensation and tested for their anti-HIV-1 activity and cytotoxicity on MT-2 cells. We found that all 15 compounds had improved anti-HIV-1 activity and 3 of them (11a, 11b, and 11d) exhibited inhibitory activity against replication of HIB-1(IIIB) and 94UG103 at < 100 nM range, more than 20-fold more potent than 12 and 13, suggesting that these Compounds can serve as leads for development of novel small molecule HIV fusion inhibitors.