Development of Novel Enkephalin Analogues that Have Enhanced Opioid Activities at Both μ and δ Opioid Receptors
摘要:
Enkephalin analogues with a 4-anilidopiperidine scaffold have been designed and synthesized to achieve therapeutic benefit for the treatment of pain due to mixed mu and delta opioid agonist activities. Ligand 16, in which a Dmt-substituted enkephalin-like structure was linked to the N-phenyl-N-piperidin-4-yl propionamide moiety, showed very high binding affinities (0.4 nM) at mu and delta receptors with an increased hydrophobicity (aLogP = 2.96). This novel lead compound was found to have very potent agonist activities in MVD (1.8 nM) and GPI (8.5 nM) assays.
Development of Novel Enkephalin Analogues that Have Enhanced Opioid Activities at Both μ and δ Opioid Receptors
摘要:
Enkephalin analogues with a 4-anilidopiperidine scaffold have been designed and synthesized to achieve therapeutic benefit for the treatment of pain due to mixed mu and delta opioid agonist activities. Ligand 16, in which a Dmt-substituted enkephalin-like structure was linked to the N-phenyl-N-piperidin-4-yl propionamide moiety, showed very high binding affinities (0.4 nM) at mu and delta receptors with an increased hydrophobicity (aLogP = 2.96). This novel lead compound was found to have very potent agonist activities in MVD (1.8 nM) and GPI (8.5 nM) assays.
Development of Novel Enkephalin Analogues that Have Enhanced Opioid Activities at Both μ and δ Opioid Receptors
作者:Yeon Sun Lee、Ravil Petrov、Chad K. Park、Shou-wu Ma、Peg Davis、Josephine Lai、Frank Porreca、Ruben Vardanyan、Victor J. Hruby
DOI:10.1021/jm061465o
日期:2007.11.1
Enkephalin analogues with a 4-anilidopiperidine scaffold have been designed and synthesized to achieve therapeutic benefit for the treatment of pain due to mixed mu and delta opioid agonist activities. Ligand 16, in which a Dmt-substituted enkephalin-like structure was linked to the N-phenyl-N-piperidin-4-yl propionamide moiety, showed very high binding affinities (0.4 nM) at mu and delta receptors with an increased hydrophobicity (aLogP = 2.96). This novel lead compound was found to have very potent agonist activities in MVD (1.8 nM) and GPI (8.5 nM) assays.