highly selective C-2 difluoromethylation of indole derivatives was developed by using sodium difluoromethylsulfinate (HCF2SO2Na) as the source of difluoromethyl groups and a Cu(II) complex as the catalyst. Various substrates were well tolerated in this transformation and the desired products were obtained in moderate to good yields. Moreover, the late-stage C-2 difluoromethylation of bioactive molecules
通过使用二氟甲基亚磺酸钠(HCF 2 SO 2 Na)作为二氟甲基的来源和Cu(II)络合物作为催化剂,开发了一种新颖且高效的吲哚衍生物高选择性C-2二氟甲基化方法。在这种转化中,各种底物都具有良好的耐受性,并且以中等至良好的产率获得了所需的产物。此外,以高收率实现了含有吲哚环的生物活性分子的后期C-2二氟甲基化。通常,该反应具有出色的官能团相容性,广泛的底物范围和出色的C-2选择性。
simple selenation with limited atom economy and complicated reaction system. In this work, we designed benzoselenazolone as a novel bifunctional selenide reagent for both off‐ and on‐DNA C−H selenylation under rhodium(III) catalysis. We show that using benzoselenazolone allowed production of a series of selenylation products containing an adjacent aminoacyl group in a fast and efficient way, with high
Cu-mediated C-2 chlorination of indoles was accomplished with copper(II) chloride through the use of a directing pyrimidyl protection group. A highly regioselective manner can be achieved on a range of indole substrates with excellent functional group tolerance.
We report a chelation-assisted C–H arylation of various indoles with sterically and electronically diverse (hetero)arylsilanes enabled by cost-effective Cp*-free cobaltcatalysis. Key to the success of this strategy is the judicious choice of copper(II) fluoride as a bifunctional sliane activator and catalyst reoxidant. This methodology features a broad substrate scope and good functional group compatibility