摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(1,3-dithiolan-2-ylidene)-1-m-tolyl-ethanone | 1610889-00-3

中文名称
——
中文别名
——
英文名称
2-(1,3-dithiolan-2-ylidene)-1-m-tolyl-ethanone
英文别名
2-(1,3-Dithiolan-2-ylidene)-1-(3-methylphenyl)ethanone
2-(1,3-dithiolan-2-ylidene)-1-m-tolyl-ethanone化学式
CAS
1610889-00-3
化学式
C12H12OS2
mdl
——
分子量
236.359
InChiKey
HRSSGJZKYFASLF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    95-97 °C
  • 沸点:
    390.1±42.0 °C(predicted)
  • 密度:
    1.308±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.2
  • 重原子数:
    15
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    67.7
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-(1,3-dithiolan-2-ylidene)-1-m-tolyl-ethanone碘苯二乙酸对甲苯磺酸 、 sodium azide 、 copper(l) chloride 、 ammonium sulfide 作用下, 以 乙腈 为溶剂, 25.0 ℃ 、100.0 kPa 条件下, 反应 0.58h, 以81%的产率得到2-amino-2-(1,3-dithiolan-2-ylidene)-1-(m-tolyl)ethanone
    参考文献:
    名称:
    在温和条件下通过内部烯烃C–H键的叠氮化进行铜催化的扩环/硫内酯化
    摘要:
    通过在温和的条件下用叠氮化钠将内部C-H键与叠氮化钠叠氮化可以有效地实现铜(I)催化的(diacetoxyiodo)苯[PhI(OAc)2 ]介导的α-氧代乙烯酮二硫缩醛的扩环/硫内酯化反应条件。在使用乙酸酐作为添加剂的情况下,发生了顺序胺化,扩环重排和硫代内酯化反应,形成胺化的硫内酯,而当使用硫化铵作为还原性添加剂时,只有进行C-H胺化处理才能得到未保护的烯胺。该原位生成的乙烯基叠氮化物被证实为活性中间体,这是由苯乙炔捕获,以产生三唑。该方案为硫代内酯衍生物和未保护的烯胺提供了一条简明的途径。
    DOI:
    10.1002/adsc.201600675
  • 作为产物:
    描述:
    二硫化碳1,2-二溴乙烷3'-甲基苯乙酮 在 sodium hydride 作用下, 以 N,N-二甲基甲酰胺甲苯 、 mineral oil 为溶剂, 反应 24.0h, 以68%的产率得到2-(1,3-dithiolan-2-ylidene)-1-m-tolyl-ethanone
    参考文献:
    名称:
    内部烯烃的C铜催化三氟甲基化?H键:三氟甲基化的四取代烯烃和N-杂环的有效途径
    摘要:
    内烯烃的官能化一直是有机合成中的一项艰巨任务。通过使用Cu(OH)2作为催化剂和TMSCF 3作为三氟甲基化试剂,实现了高效的Cu II催化的内烯烃三氟甲基化,即α-氧杂环丁烯二硫缩醛。极化烯烃底物的推挽效应促进了内部烯烃CH三氟甲基化。环状和无环二硫代烷基α-氧杂环丁烯缩醛用作底物,并且可以接受各种取代基。内烯烃CH键裂解不参与速率确定步骤,基于三氟甲基化反应的TEMPO猝灭实验,提出了一种涉及自由基的机理。所得CF 3烯烃的进一步衍生导致多官能化的四取代CF 3烯烃和三氟甲基化的N-杂环。
    DOI:
    10.1002/chem.201305069
点击查看最新优质反应信息

文献信息

  • Iron-catalyzed alkylation of α-oxo ketene dithioacetals
    作者:Qin Yang、Ping Wu、Jiping Chen、Zhengkun Yu
    DOI:10.1039/c4cc02264e
    日期:——

    Iron-catalyzed alkylation of α-oxo ketene dithioacetals by styrenes efficiently afforded highly functionalized tetrasubstituted olefins.

    催化的α-氧酮二代醛与苯乙烯的烷基化反应高效地合成了高度官能化的四取代烯烃。
  • Ruthenium- and Rhodium-Catalyzed Chemodivergent Couplings of Ketene Dithioacetals and α-Diazo Ketones via C–H Activation/Functionalization
    作者:Manman Wang、Lingheng Kong、Qiyue Wu、Xingwei Li
    DOI:10.1021/acs.orglett.8b01890
    日期:2018.8.3
    Chemodivergent coupling of α-acylketene dithioacetals with diazo compounds has been realized under catalyst control. The Ru(II)-catalyzed C–H activation occurred at the olefinic position, and 1:2 coupling with α-diazoketoesters leads to furfurylation. In contrast, the Rh(III)-catalyzed C–H functionalization occurred at both the olefinic and the ortho C(aryl)–H positions, and [4 + 2] annulation afforded
    在催化剂控制下已经实现了α-酰基乙烯酮缩醛与重氮化合物的化学发散偶联。Ru(II)催化的C–H活化发生在烯烃位置,并且与α-二重氮酮酸酯的1:2偶联导致糠醛化。相比之下,Rh(III)催化的C–H功能化同时发生在烯烃和邻位C(芳基)–H位置,[4 + 2]环烷基化提供酮。已经进行了合成应用以证明耦合系统的有用性。
  • Electrochemical Ammonium Cation‐Assisted Hydropyridylation of Ketone‐Activated Alkenes: Experimental and Computational Mechanistic Studies
    作者:Jianjing Yang、Jing Ma、Kelu Yan、Laijin Tian、Bingwen Li、Jiangwei Wen
    DOI:10.1002/adsc.202101361
    日期:2022.2.15
    This work describes an electrochemical ammonium cation enabled hydropyridylation of ketone-activated alkenes under metal- and exogenous reductant free conditions giving access to β-pyridyl ketones, through dual proton-coupled electron transfer and radical cross-coupling. It features a broad substrate scope and allows a gram-scale synthesis. Ammonium chloride plays various roles in this transformation
    这项工作描述了一种电化学阳离子,通过双质子耦合电子转移和自由基交叉偶联,在无属和外源还原剂的条件下实现酮活化烯烃的氢化吡啶基化,从而获得 β-吡啶基酮。它具有广泛的底物范围并允许克级合成。氯化铵在这种转变中扮演着各种角色,例如氢供体、质子化试剂和电解质。特别是,各种实验和密度泛函理论(DFT)计算结果表明,双质子耦合电子转移后自由基交叉耦合的机制是首选途径。
  • 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-Mediated C(<i>sp</i> <sup>2</sup> )-C(<i>sp</i> <sup>3</sup> ) Cross-Dehydrogenative Coupling Reaction: α-Alkylation of Push-Pull Enamines and α-Oxo Ketene Dithioacetals
    作者:Dongping Cheng、Lijun Wu、Zhiteng Deng、Xiaoliang Xu、Jizhong Yan
    DOI:10.1002/adsc.201700853
    日期:2017.12.19
    A novel, metal‐free crossdehydrogenative coupling (CDC) reaction of C(sp2)–H bonds of enamines and α‐oxo ketene dithioacetals with C(sp3)–H bonds of 1,3‐diarylpropenes mediated by 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) is reported. The α‐alkylation products are obtained with moderate to good yields. The method provides an efficient and alternative strategy for the synthesis of the corresponding
    一种新型的,无属的交叉脱氢偶联(CDC)C的反应(SP 2)烯胺与α氧代烯酮二的-H键与C(SP 3)1,3- diarylpropenes -H键由2介导的,报告了3-二-5,6-二基-1,4-苯醌(DDQ)。获得的α-烷基化产物的产率中等至良好。该方法提供了用于合成相应产物的有效且可替代的策略。
  • Metal-Free Direct Alkylation of Ketene Dithioacetals by Oxidative C(sp<sup>2</sup> )−H/C(sp<sup>3</sup> )−H Cross-Coupling
    作者:Jiangwei Wen、Fan Zhang、Wenyan Shi、Aiwen Lei
    DOI:10.1002/chem.201701664
    日期:2017.7.3
    The functionalization of internal olefins has been a challenging task in organic synthesis. This protocol provides an efficient and transitionmetalfree direct oxidative C(sp2)−H/C(sp3)−H crosscoupling method to access tetrasubstituted olefins. The push–pull effect from the polarized olefin substrates accelerates the internal olefin C−H alkylation. Importantly, the mechanistic experimental results
    内烯烃的官能化一直是有机合成中的一项艰巨任务。该协议提供了一种高效且无过渡属的直接氧化C(sp 2)-H / C(sp 3)-H交叉偶联方法来访问四取代的烯烃。极化烯烃底物的推挽效应加速了内部烯烃的CH烷基化。重要的是,机理实验结果表明,烷烃的CH键断裂是决定速率的步骤,并且已为烷基化反应提出了自由基途径。值得注意的是,本方案具有优异的官能团耐受性,并且可以容易地以良好的效率按比例放大。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫