Genetically Encoded Cyclopropene Directs Rapid, Photoclick-Chemistry-Mediated Protein Labeling in Mammalian Cells
作者:Zhipeng Yu、Yanchao Pan、Zhiyong Wang、Jiangyun Wang、Qing Lin
DOI:10.1002/anie.201205352
日期:2012.10.15
We just click: Genetic incorporation of a cyclopropene amino acid CpK (see scheme) site‐specifically into proteins in E. coli and mammaliancells was achieved using an orthogonal aminoacyl‐tRNA synthetase/tRNACUA pair (CpKRS/MbtRNACUA). Cyclopropene exhibited fast reaction kinetics in the photoclick reaction and allowed rapid (ca. 2 min) labeling of proteins.
Synthesis of Functionalized <i>N</i>-Acetyl Muramic Acids To Probe Bacterial Cell Wall Recycling and Biosynthesis
作者:Kristen E. DeMeester、Hai Liang、Matthew R. Jensen、Zachary S. Jones、Elizabeth A. D’Ambrosio、Samuel L. Scinto、Junhui Zhou、Catherine L. Grimes
DOI:10.1021/jacs.8b03304
日期:2018.8.1
purification strategies to access large quantities of these PG building blocks, as well as their derivatives, are challenging. A robust chemoenzymatic synthesis was developed using an expanded NAM library to produce a variety of 2 -N-functionalized UDP NAMs. In addition, a synthetic strategy to access bio-orthogonal 3-lactic acid NAM derivatives was developed. The chemoenzymatic UDP synthesis revealed that the
尿苷二磷酸N-乙酰胞壁酸 (UDP NAM) 是细菌肽聚糖 (PG) 生物合成的关键中间体。作为塑造 PG 骨架的胞壁酸的主要来源,安装在 UDP NAM 中间体的修饰可用于通过代谢掺入选择性地标记和操纵该聚合物。然而,获取大量这些 PG 构建块及其衍生物的合成和纯化策略具有挑战性。使用扩展的 NAM 库开发了强大的化学酶合成,以产生各种 2-N-功能化的 UDP NAM。此外,还开发了一种获取生物正交 3-乳酸 NAM 衍生物的合成策略。化学酶促 UDP 合成表明,细菌细胞壁再循环酶 MurNAc/GlcNAc 异头激酶 (AMgK) 和 NAM α-1 磷酸尿苷转移酶 (MurU) 允许在糖供体的两个和三个位置进行排列。我们使用包括四嗪连接在内的各种生物正交化学进一步探索了这些衍生物在全细胞中革兰 (-) 和革兰 (+) PG 荧光标记中的效用。该报告允许快速和可扩展地访问各种功能化的
Selective Syntheses of Δ<sup>α,β</sup> and Δ<sup>β,γ</sup> Butenolides from Allylic Cyclopropenecarboxylates via Tandem Ring Expansion/[3,3]-Sigmatropic Rearrangements
作者:Xiaocong Xie、Yi Li、Joseph M. Fox
DOI:10.1021/ol400264a
日期:2013.4.5
Allylic cyclopropenecarboxylates undergo ring expansion reactions to give 2-allyloxyfuran intermediates, which subsequently rearrange to Delta(beta,gamma) butenolides via a Cialsen rearrangement or to the corresponding Delta(alpha,beta) butenolides via further Cope rearrangement. Also described are methods for chirality transfer in the rearrangement of nonracemic allylic esters.