摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-叔丁氧羰基-六聚乙二醇-对甲苯磺酸酯 | 1264015-76-0

中文名称
N-叔丁氧羰基-六聚乙二醇-对甲苯磺酸酯
中文别名
叔丁氧羰基-PEG6-对甲苯磺酸酯
英文名称
2,2-dimethyl-4-oxo-3,8,11,14,17,20-hexaoxa-5-azadocosan-22-yl 4-methylbenzenesulfonate
英文别名
t-Boc-N-amido-PEG6-Tos;2-[2-[2-[2-[2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethyl 4-methylbenzenesulfonate
N-叔丁氧羰基-六聚乙二醇-对甲苯磺酸酯化学式
CAS
1264015-76-0
化学式
C24H41NO10S
mdl
——
分子量
535.656
InChiKey
FKHWXQLQWBHGOX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    627.9±55.0 °C(Predicted)
  • 密度:
    1.159±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.5
  • 重原子数:
    36
  • 可旋转键数:
    22
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.71
  • 拓扑面积:
    136
  • 氢给体数:
    1
  • 氢受体数:
    10

安全信息

  • 危险性防范说明:
    P501,P270,P264,P280,P302+P352,P337+P313,P305+P351+P338,P362+P364,P332+P313,P301+P312+P330
  • 危险性描述:
    H302,H315,H319

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • [EN] THERAPEUTIC COMPOSITION OF CURE-PRO COMPOUNDS FOR TARGETED DEGRADATION OF BET DOMAIN PROTEINS, AND METHODS OF MAKING AND USAGE<br/>[FR] COMPOSITION THÉRAPEUTIQUE DE COMPOSÉS CURE-PRO POUR LA DÉGRADATION CIBLÉE DE PROTÉINES À DOMAINE BET ET PROCÉDÉS DE FABRICATION ET D'UTILISATION
    申请人:UNIV CORNELL
    公开号:WO2022031772A1
    公开(公告)日:2022-02-10
    The present application is directed to a therapeutic composition, comprising two precursor compounds (monomers) that are suitable for assembly via two or more reversible covalent bonds. The monomers are polyfunctionalized molecules comprising a bioorthogonal linker element and ligand or pharmacophore, wherein the linker and ligand/pharmacophore are covalently coupled to each other either directly or through an optional connector moiety.
    本申请涉及一种治疗组合物,包括两种前体化合物(单体),适合通过两个或更多可逆共价键进行组装。这些单体是多官能化分子,包括生物正交连接元素和配体或药效团,其中连接元素和配体/药效团通过直接或通过可选连接物基团共价耦合在一起。
  • Efficient, multi-hundred-gram scale access to E3 ubiquitin ligase ligands for degrader development
    作者:Mark S. Cooper、Mark C. Norley、Simon Armitage、Joel O. Cresser-Brown、Anthony K. Edmonds、Sean Goggins、Jonathan P. Hopewell、Burhan Karadogan、Kevin A. Knights、Toby J. Nash、Catherine S. Oakes、William J. O'Neill、Simon J. Pridmore、Hannah J. Maple、Graham P. Marsh
    DOI:10.1039/d3ob00983a
    日期:——
    process involves simultaneous optimization of the three principle degrader components: E3 ubiquitin ligase ligand, linker, and protein of interest (POI) ligand. A substantial degree of commonality exists with the E3 ligase ligands typically used at the early stages of degrader development, resulting in demand for these compounds as chemical building blocks in degrader research programs. We describe
    小分子异双功能降解剂(通常也称为 PROTAC)在未满足医疗需求的领域提供了提供新疗法的巨大潜力。为了兑现这一承诺,药物化学领域出现了一门针对降解剂设计和优化的新学科,以解决一个核心挑战,即如何优化相对较大的异双功能分子的活性,同时保持药物样特性。该过程涉及三个主要降解剂组分的同时优化:E3 泛素连接酶配体、接头和目的蛋白 (POI) 配体。通常在降解剂开发的早期阶段使用的 E3 连接酶配体存在很大程度的共性,因此需要这些化合物作为降解剂研究项目的化学构件。我们在此描述了大规模、高产合成的整理,以获得最常用的 E3 连接酶配体,以支持早期降解剂的开发。
  • IRAK degraders and uses thereof
    申请人:Kymera Therapeutics, Inc.
    公开号:US10874743B2
    公开(公告)日:2020-12-29
    The present invention provides compounds, compositions thereof, and methods of using the same.
    本发明提供了化合物、其组合物以及使用方法。
  • Solid-Phase-Based Synthesis of Ureidopyrimidinone–Peptide Conjugates­ for Supramolecular Biomaterials
    作者:Patricia Dankers、Isja de Feijter、Olga Goor、Simone Hendrikse、Marta Comellas-Aragonès、Serge Söntjens、Sabrina Zaccaria、Peter Fransen、Joris Peeters、Lech-Gustav Milroy
    DOI:10.1055/s-0035-1560520
    日期:——
    Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the UPy moiety to biologically active peptides ensures adequate integration into the supramolecular UPy polymer matrix. The structural complexity of UPy-peptide conjugates makes their synthesis challenging and until recently low yielding, thus restricted the access to structurally diverse derivatives. Here we report optimization studies of a convergent solid-phase based synthesis of UPy-modified peptides. The peptide moiety is synthesized using standard Fmoc solid-phase synthesis and the UPy fragment is introduced on the solid-phase simplifying the synthesis and purification of the final UPy-peptide conjugate. The convergent nature of the synthesis reduces the number of synthetic steps in the longest linear sequence compared to other synthetic approaches. We demonstrate the utility of the optimized route by synthesizing a diverse range of biologically active UPy-peptide bioconjugates in multimilligram scale for diverse biomaterial applications. 1 Introduction 2 Divergent Synthesis 3 Convergent Synthesis 4 UPy-Amine Strategy 5 UPy-Carboxylic Acid Strategy 6 Conclusion
  • Supramolecular Polymers as Dynamic Multicomponent Cellular Uptake Carriers
    作者:Katja Petkau-Milroy、Michael H. Sonntag、Arthur H. A. M. van Onzen、Luc Brunsveld
    DOI:10.1021/ja3029075
    日期:2012.5.16
    Supramolecular synthesis represents a flexible approach to the generation of dynamic multicomponent materials with tunable properties. Here, cellular uptake systems based on dynamic supramolecular copolymers have been developed using a combination of differently functionalized discotic molecules. Discotics featuring peripheral amine functionalities that endow the supramolecular polymer with cellular uptake capabilities were readily synthesized. This enabled the uptake of otherwise cell-impermeable discotics via cotransport as a function of supramolecular coassembly. Dynamic multicomponent and multifunctional supramolecular polymers represent a novel and unique platform for modular cellular uptake systems.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫