The present invention generally relates to methods of inhibiting ethylene responses in plants and plant materials, and particularly relates to methods of inhibiting various ethylene responses including plant maturation and degradation, by exposing plants to cyclopropene derivatives and compositions thereof wherein: 1) at least one substituent on the cyclopropene ring contains a carbocyclic or heterocyclic ring, or 2) . a substituent contains silicon, sulfur, phosphorous, or boron, or 3) least one substituent contains from one to four non-hydrogen atoms and at least one substituent contains more than four non-hydrogen atoms.
Gold(i)-catalysed alcohol additions to cyclopropenes
作者:Maximillian S. Hadfield、Jürgen T. Bauer、Pauline E. Glen、Ai-Lan Lee
DOI:10.1039/c0ob00085j
日期:——
Gold(I)-catalysed addition of alcohols to 3,3-disubstituted cyclopropenes occurs in a highly regioselective and facile manner to produce alkyl tert-allylic ethers in good yields. The reaction is tolerant of sterically hindered substituents on the cyclopropene as well as primary and secondary alcohols as nucleophiles. In this full article, we report on the substrate scope and plausible mechanism, as well as the regioselectivity issues arising from subsequent gold(I)-catalysed isomerisation of tertiary to primary allylic ethers.
The present invention generally relates to methods of inhibiting ethylene responses in plants and plant materials, and particularly relates to methods of inhibiting various ethylene responses including plant maturation and degradation, by exposing plants to cyclopropene derivatives and compositions thereof wherein: 1) at least one substituent on the cyclopropene ring contains a carbocyclic or heterocyclic ring, or 2) a substituent contains silicon, sulfur, phosphorous, or boron, or 3) least one substituent contains from one to four non-hydrogen atoms and at least one substituent contains more than four non-hydrogen atoms.