摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

7β-hydroxy-androst-4-ene-3,17-dione | 31427-20-0

中文名称
——
中文别名
——
英文名称
7β-hydroxy-androst-4-ene-3,17-dione
英文别名
7beta-Hydroxyandrostenedione;(7S,8R,9S,10R,13S,14S)-7-hydroxy-10,13-dimethyl-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthrene-3,17-dione
7β-hydroxy-androst-4-ene-3,17-dione化学式
CAS
31427-20-0
化学式
C19H26O3
mdl
——
分子量
302.414
InChiKey
LFWLQMQUJQUZBD-HQRJMKCBSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    221-225 °C(Solv: acetone (67-64-1); cyclohexane (110-82-7))
  • 沸点:
    477.1±45.0 °C(Predicted)
  • 密度:
    1.19±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    22
  • 可旋转键数:
    0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.79
  • 拓扑面积:
    54.4
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Microbial hydroxylation of steroids. 8. Incubation of Cn halo- and other substituted steroids with Cn hydroxylating fungi
    作者:Herbert L. Holland、Everton M. Thomas
    DOI:10.1139/v82-027
    日期:1982.1.15

    A series of C-21 substituted progesterone derivatives (R = F, Cl, Br, CH3) has been prepared, and incubated the C-21 hydroxylating fungus A. niger. No biotransformation was observed where R = Cl, Br, or CH3, but a minor amount of hydroxylation occurred at an unidentified site where R = F. Two C-11β substituted progesterone derivatives (R = F, OH) were converted to the corresponding C-11 ketone by the C-11α hydroxylator R. stolonifer, but a C-11β hydroxylator (C. lunata) was unable to perform a similar transformation with a C-11α hydroxy substrate. C. lunata hydroxylated a C-11β fluoro substrate at C-14α and C-21 in low yield. C-7α and -7β-hydroxy androst-4-ene-3,17-diones were prepared and incubated with C-7β hydroxylating (R. stolonifer) and C-7α hydroxylating (M. griseocyanus) fungi respectively. No ketone formation was observed. Similarly, the C-6β hydroxylator R. arrhizus was unable to transform a C-6α-hydroxy substrate or C-6α- or C-6β-hydroxy-B-norsteroids. No oxidation at halogen was observed for any of the substrates used. 13C–19F coupling constants for 11β-fluoroprogesterone suggest the presence of through space interactions between fluorine and both C-18 and C-19.

    一系列C-21取代孕酮生物(R = F、Cl、Br、CH3)已经制备,并与C-21羟化真菌A. niger培养。观察到当R = Cl、Br或 时未发生生物转化,但当R = F时,在未知位置发生了少量羟基化。两种C-11β取代孕酮生物(R = F、OH)被C-11α羟化酶R. stolonifer转化为相应的C-11,但C-11β羟化酶(C. lunata)无法使用C-11α羟基底物进行类似转化。C. lunata在低产率下将C-11β底物羟化为C-14α和C-21。制备了C-7α和-7β-羟基雄-4--3,17-二,并分别与C-7β羟化(R. stolonifer)和C-7α羟化(M. griseocyanus)真菌培养。未观察到形成。同样,C-6β羟化酶R. arrhizus无法转化C-6α-羟基底物或C-6α-或C-6β-羟基B-诺甾醇。未观察到任何底物的卤素化。11β-氟孕酮13C–19F偶合常数表明与C-18和C-19之间存在空间相互作用。
  • Microbial transformation of androstenedione by <i>Cladosporium sphaerospermum</i> and <i>Ulocladium chartarum</i>
    作者:Kudret Yildirim、Ali Kuru、Eda Küçükbaşol
    DOI:10.1080/10242422.2019.1604690
    日期:2020.1.2
    Abstract In this work, incubations of androstenedione 1 with Cladosporium sphaerospermum MRC 70266 and Ulocladium chartarum MRC 72584 have been reported. C. sphaerospermum MRC 70266 mainly hydroxylated 1 at C-6β, accompanied by a hydroxylation at C-15α, a reduction at C-17, a 5α-reduction and oxidations at C-6 and C-16 following hydroxylations. U. chartarum MRC 72584 hydroxylated 1 at C-6β, C-7α, C-7β
    摘要 在这项工作中,已经报道了雄烯二酮 1 与 Cladosporium sphaerospermum MRC 70266 和 Ulocladium chartarum MRC 72584 的孵育。C. sphaerospermum MRC 70266 主要在 C-6β 处将 1 羟基化,伴随着 C-15α 处的羟基化、C-17 处的还原、5α-还原以及羟基化后 C-6 和 C-16 处的化。U. chartarum MRC 72584 在 C-6β、C-7α、C-7β 和 C-14α 处羟基化 1,伴随其羟基化后 C-6 处的化、C-17 处的还原和 5α 还原。6β,17β-Dihydroxyandrost-4-en-3,16-dione 8 是 1 与 C. sphaerospermum MRC 70266 孵育的代谢物之一,被确定为一种新化合物。
  • Biotransformation of Testosterone by Ulocladium Chartarum Mrc 72584
    作者:Kudret Yildirim、Ali Kuru、Şengül Yılmaz
    DOI:10.3184/174751918x15341764332783
    日期:2018.8

    The incubation of testosterone 1 with Ulocladium chartarum MRC 72584 has been reported. U. chartarum MRC 72584 hydroxylated testosterone 1 at C-7β, C-6β, C-14α and C-12β, accompanied by a 5α-reduction and oxidations at C-6 and at C-17.

    有报告称,睾酮 1 与 Ulocladium chartarum MRC 72584 进行了培养。U. chartarum MRC 72584 在睾酮 1 的 C-7β、C-6β、C-14α 和 C-12β 处羟化,同时在 C-6 和 C-17 处发生 5α 还原和化反应。
  • Oxidative Diversification of Steroids by Nature-Inspired Scanning Glycine Mutagenesis of P450BM3 (CYP102A1)
    作者:Wenyu Chen、Matthew J. Fisher、Aaron Leung、Yang Cao、Luet L. Wong
    DOI:10.1021/acscatal.0c02077
    日期:2020.8.7
    bonds in steroids. Here, we report the engineering of the stable, highly active bacterial cytochrome P450 enzyme P450BM3 (CYP102A1) from Bacillus megaterium for the mono- and dihydroxylation of androstenedione (AD), dehydroepiandrosterone (DHEA), and testosterone (TST). In order to design altered steroid binding orientations, we compared the structure of wild type P450BM3 with the steroid C19-demethylase
    甾族化合物是处方最广泛的药物,被指定用于治疗各种疾病,包括炎症,心脏病和癌症。功能化类固醇的合成方法对于产生用于药物筛选和开发的类固醇剂很重要。但是,由于类固醇中主要存在惰性的脂肪族CH键,因此化学活化具有挑战性。在这里,我们报道了来自巨大芽孢杆菌的稳定,高活性细菌细胞色素P450酶P450BM3(CYP102A1)的工程设计用于雄烯二酮(AD),表雄酮DHEA)和睾丸激素(TST)的单羟基和二羟基化作用。为了设计改变的类固醇结合方向,我们比较了野生型P450BM3与类固醇C19-去甲基化酶CYP19A1的结构,其中AD结合在其活性位点,并鉴定了I螺旋和β4链区域,该区域阻止了P450BM3的这种结合方向。在这两个区域的11个残基上扫描甘酸诱变会导致以前未报道过P450BM3的类固醇化产物。在第二轮诱变中将这些甘酸突变结合在一起,形成了一个小的P450BM3变体文库,该变体能够
  • Microbial transformation of androst-4-ene-3,17-dione by three fungal species Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens
    作者:Marjan Heidary、Zohreh Habibi
    DOI:10.1016/j.molcatb.2016.01.007
    日期:2016.4
    Microbial transformation of androst-4-ene-3,17-dione (AD;I) by three fungal species including Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens was investigated for the first time. While A. griseolla and C. muscae carried out hydroxylation reactions, the third fungi performed reduction of the 17-carbonyl group in a chemoselective manner. Incubation of AD by A. griseolla yielded
    包括Absidia griseolla var在内的三种真菌对雄酮-4--3,17-二(AD; I)的微生物转化。首次对igachii,小圆盘菌和维氏木霉进行了研究。虽然A. griseolla和C. muscae进行羟基化反应中,第三真菌化学选择性的方式进行还原17-羰基。通过AD的孵育A. griseolla得到4种代谢物6β-(II),7α - (III),7β-(VI)和14α羟基AD(V),其中6β羟基AD(II)被确定为主要产品。此外,由天蛾(C. muscae)在AD生物转化过程中产生的代谢产物是6β-(II),7β-(III)和14α-羟基-AD(V)。另一方面,T。virens显着地将AD还原为睾丸激素(VI),这是唯一具有60%收率的产品。这些代谢物通过TLC纯化,并通过1 H NMR,13 C NMR和其他光谱数据鉴定。
查看更多

同类化合物

(5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 齐墩果酸衍生物1 黄麻属甙 黄芪皂苷III 黄芪皂苷 II 黄芪甲苷 IV 黄芪甲苷 黄肉楠碱 黄果茄甾醇 黄杨醇碱E 黄姜A 黄夹苷B 黄夹苷 黄夹次甙乙 黄夹次甙乙 黄夹次甙丙 黄体酮环20-(乙烯缩醛) 黄体酮杂质EPL 黄体酮杂质1 黄体酮杂质 黄体酮杂质 黄体酮EP杂质M 黄体酮EP杂质G(RRT≈2.53) 黄体酮EP杂质F 黄体酮6-半琥珀酸酯 黄体酮 17alpha-氢过氧化物 黄体酮 11-半琥珀酸酯 黄体酮 麦角甾醇葡萄糖苷 麦角甾醇氢琥珀酸盐 麦角甾烷-6-酮,2,3-环氧-22,23-二羟基-,(2b,3b,5a,22R,23R,24S)-(9CI) 麦角甾烷-3,6,8,15,16-五唑,28-[[2-O-(2,4-二-O-甲基-b-D-吡喃木糖基)-a-L-呋喃阿拉伯糖基]氧代]-,(3b,5a,6a,15b,16b,24x)-(9CI) 麦角甾烷-26-酸,5,6:24,25-二环氧-14,17,22-三羟基-1-羰基-,d-内酯,(5b,6b,14b,17a,22R,24S,25S)-(9CI) 麦角甾-8-烯-3-醇 麦角甾-8,24(28)-二烯-26-酸,7-羟基-4-甲基-3,11-二羰基-,(4a,5a,7b,25S)- 麦角甾-7,22-二烯-3-酮 麦角甾-7,22-二烯-17-醇-3-酮 麦角甾-5,24-二烯-26-酸,3-(b-D-吡喃葡萄糖氧基)-1,22,27-三羟基-,d-内酯,(1a,3b,22R)- 麦角甾-5,22,25-三烯-3-醇 麦角甾-4,6,8(14),22-四烯-3-酮 麦角甾-1,4-二烯-3-酮,7,24-二(乙酰氧基)-17,22-环氧-16,25-二羟基-,(7a,16b,22R)-(9CI) 麦角固醇 麦冬皂苷D 麦冬皂苷D 麦冬皂苷 B