摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

DL-cysteinium semioxalate | 109735-16-2

中文名称
——
中文别名
——
英文名称
DL-cysteinium semioxalate
英文别名
——
DL-cysteinium semioxalate化学式
CAS
109735-16-2
化学式
C2H2O4*C3H7NO2S
mdl
——
分子量
211.196
InChiKey
QURBNZSSBFYGMV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.52
  • 重原子数:
    13.0
  • 可旋转键数:
    2.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.4
  • 拓扑面积:
    137.92
  • 氢给体数:
    5.0
  • 氢受体数:
    5.0

反应信息

  • 作为产物:
    描述:
    DL-半胱氨酸草酸 为溶剂, 生成 DL-cysteinium semioxalate
    参考文献:
    名称:
    Structural analysis, NLO activity and Hirshfeld surfaces of DL-cysteinium semioxalate crystal
    摘要:
    The main objective of the study is to analyze the structural behavior and NLO activity of DL-cysteinium semioxalate crystal by experimental and theoretical spectroscopic technique. The distribution of vibra- tional bands are carried out with the help of normal coordinate analysis. Hirsh feld surface analysis of DL- cysteinium semioxalate is done and the obtained fi nger print plots reveal the interactions with in the compound. The grown DL-Cysteinium semioxalate crystals belong to hard material category and it con fi rms the normal indentation size effect. The third order nonlinear optical parameters were measured experimentally by open and closed aperture z -scan technique. The optical limiting property and laser demage threshold studied recommond the crystal can be promising material for laser assisted application. (c) 2020 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.molstruc.2020.128278
点击查看最新优质反应信息

文献信息

  • Stabilizing structures of cysteine-containing crystals with respect to variations of temperature and pressure by immobilizing amino acid side chains
    作者:Vasily S. Minkov、Elena V. Boldyreva、Tatiana N. Drebushchak、Carl Henrik Görbitz
    DOI:10.1039/c2ce25241d
    日期:——
    In a series of recent publications, the crystals of L- and DL-cysteine were shown to undergo multiple phase transitions upon variation of temperature and pressure. All these transitions are related to rotation of the amino acid side chain. Accordingly, cysteine-containing crystal structures should be stabilized with respect to phase transitions by measures that reduce the mobility of the side chain in the crystalline environment. In the present work, we show that this can be achieved by increasing the significance of the side chain –SH group as a participant in intermolecular hydrogen bonds, either by N-acetylation, which removes the strong –NH3+ donor of cysteine and leaves a system without strong charge-assisted interactions, or by co-crystallization with an acid (oxalic acid) that converts the amino acid to a cation and itself forms a strong anion H-bond acceptor, thus boosting the importance of potential –SH donors. The crystal structures of the three compounds N-acetyl-L-cysteine, DL-cysteinium semioxalate, and bis(DL-cysteinium) oxalate have thus been studied with variation of temperature and pressure. Cooling down to 4 K and increasing pressure up to 9.5 GPa did not result in any structural phase transitions in N-acetyl-L-cysteine and bis(DL-cysteinium) oxalate. In case of DL-cysteinium semioxalate, increasing pressure caused a phase transition at a much higher pressure (∼6 GPa), compared to the ranges of pressure-induced phase transitions observed earlier for both monoclinic and orthorhombic L-cysteine (2.5–3.9 GPa and 1.1–2.5 GPa, respectively) or DL-cysteine (0.1–5 GPa). This phase transition had a large hysteresis, so that the reverse transformation on decompression was observed at ∼3.7 GPa only, and was accompanied by a change in molecular conformations, as well as by the reorganization in the N–H⋯O hydrogen bonds in the crystal structure.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸