摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2R,4S,5R,6R)-5-acetamido-2-[[(2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl](313C)oxane-2-carboxylic acid | 288301-85-9

中文名称
——
中文别名
——
英文名称
(2R,4S,5R,6R)-5-acetamido-2-[[(2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl](313C)oxane-2-carboxylic acid
英文别名
——
(2R,4S,5R,6R)-5-acetamido-2-[[(2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl](313C)oxane-2-carboxylic acid化学式
CAS
288301-85-9
化学式
C20H31N4O16P
mdl
——
分子量
615.446
InChiKey
TXCIAUNLDRJGJZ-QKVVMOMXSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -6.7
  • 重原子数:
    41
  • 可旋转键数:
    11
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.7
  • 拓扑面积:
    321
  • 氢给体数:
    10
  • 氢受体数:
    16

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    绿色小单孢菌唾液酸酶催化水解的去糖基化会限制周转率:Michaelis 复合物的构象意义
    摘要:
    基于核心结构 7-(5-acetamido-3,5-dideoxy-d-glycero-α-d-galacto-non-2-ulopyranosylonic acid)-(2→6) 的一组七种同位素取代的唾液酸苷天然底物类似物)-β-D-吡喃半乳糖氧基)-8-氟-4-甲基香豆素 (1, Neu5Acα2,6GalβFMU) 已被合成并用于探测 M. viridifaciens 唾液酸酶转换的限速步骤。环氧 ((18)V)、离去基团氧 ((18)V)、异头碳 ((13)V)、C3-碳 ((13) V)、C3-R 氘 ((D)V(R))、C3-S 氘 ((D)V(S)) 和 C3-双氘 ((D)(2)V) 为 0.986 ± 0.003、1.003分别为 ± 0.005、1.021 ± 0.006、1.001 ± 0.008、1.029 ± 0.007、0.891 ± 0.008 和 0.890
    DOI:
    10.1021/ja109199p
  • 作为产物:
    参考文献:
    名称:
    一种在完整糖蛋白上精确化学酶合成 13C 标记的唾液酸寡糖的方法:一种新的单锅 [3-13C]-标记唾液酸类似物的方法,通过控制可逆醛缩酶反应,酶促合成 [3-13C]糖蛋白上的-NeuAc-α-(2→3)-[U-13C]-Gal-β-(1→4)-GlcNAc-β-序列及其构象分析
    摘要:
    A one-pot enzymatic C-13-labeling method for the 3-position of sialic acid (NeuAc) analogues has been developed using NeuAc aldolase, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADI-T), and nucleotide pyrophosphatase (NPP). This method consists of two steps, the first of which is degradation to 2-acetamido-2-deoxy-D-mannose (ManNAc) analogues. This degradation reaction was accelerated by a cofactor regeneration system which converts pyruvic acid into lactic acid using LDH, ADH, and beta-nicotinamide adenine dinucleotide oxidized form (beta-NAD(+)). The second step is condensation of the ManNAc analogue with [3-C-13]-pyruvic acid newly added after decomposition of the cofactor by nucleotide pyrophosphatase which play a role like switch to stop conversion of pyruvic acid into lactic acid. Five different NeuAc analogues have been labeled in good yields using this newly developed one-pot enzymatic procedure. Following conversion of [3-C-13]-NeuAc to CMP-[3-C-13]-NeuAc, enzymatic synthesis of [3-C-13]-NeuAc-alpha-(2-->3)-[U-C-13]-Gal-beta-(1-->4)-GlcNAc-beta-x-ovalbumin (x: hybrid type oligosaccharide) 23 and [3-C-13]-NeuAc-alpha-(2-->3)-[U-C-13]-Gal-beta-(1-->4)-GlcNAc-beta-OMe 26 (sialyl LacNAc) was performed using bovine beta-1,4-galactosyltransferase and rat recombinant alpha-2,3-sialyltransferase. The H-1 chemical shifts of all protons in [3-C-13]-NeuAc-alpha-(2-->3)-[U-C-13]-Gal-beta- on a glycoprotein were assigned by 2D HMQC, 1D HSQC-TOCSY, and the herein described 1D and 2D HSQC-TOCSY-NOESY-TOCSY method. More specifically, the 7-, 8-, and 9-protons of NeuAc could be observed by this HSQC-TOCSY-NOESY-TOCSY method even with only a single C-13 atom at the 3-position. In addition, 1D and 2D HMQC-NOESY spectra as well as carbon spin-lattice relaxation times (T-1) were measured to compare the conformational properties and dynamic behavior of the sialylgalactoside as part of the sialyl LacNAc 26 and when bound to a glycoprotein 23. These analyses suggested that the conformational properties of sialyl LacNAc are similar for both the conjugated and unconjugated forms, and that the torsional angle of the sialyl linkage, i.e., COOH-C2(NeuAc)-O-C3(Gal), is biased toward the anti (-146.7 degrees) conformation. In addition, the flexibility of galactosyl ring when bound to a glycoprotein appears to be significantly restricted by the attachment of NeuAc as compared with unconjugated sialyl LacNAc.
    DOI:
    10.1021/ja994211j
点击查看最新优质反应信息

文献信息

  • Turnover Is Rate-Limited by Deglycosylation for Micromonospora viridifaciens Sialidase-Catalyzed Hydrolyses: Conformational Implications for the Michaelis Complex
    作者:Jefferson Chan、April Lu、Andrew J. Bennet
    DOI:10.1021/ja109199p
    日期:2011.3.9
    effects (KIEs) on k(cat) for the ring oxygen ((18)V), leaving group oxygen ((18)V), anomeric carbon ((13)V), C3-carbon ((13)V), C3-R deuterium ((D)V(R)), C3-S deuterium ((D)V(S)), and C3-dideuterium ((D)(2)V) are 0.986 ± 0.003, 1.003 ± 0.005, 1.021 ± 0.006, 1.001 ± 0.008, 1.029 ± 0.007, 0.891 ± 0.008, and 0.890 ± 0.006, respectively. The solvent deuterium KIE ((D(2)O)V) for the sialidase-catalyzed hydrolysis
    基于核心结构 7-(5-acetamido-3,5-dideoxy-d-glycero-α-d-galacto-non-2-ulopyranosylonic acid)-(2→6) 的一组七种同位素取代的唾液酸苷天然底物类似物)-β-D-吡喃半乳糖氧基)-8-氟-4-甲基香豆素 (1, Neu5Acα2,6GalβFMU) 已被合成并用于探测 M. viridifaciens 唾液酸酶转换的限速步骤。环氧 ((18)V)、离去基团氧 ((18)V)、异头碳 ((13)V)、C3-碳 ((13) V)、C3-R 氘 ((D)V(R))、C3-S 氘 ((D)V(S)) 和 C3-双氘 ((D)(2)V) 为 0.986 ± 0.003、1.003分别为 ± 0.005、1.021 ± 0.006、1.001 ± 0.008、1.029 ± 0.007、0.891 ± 0.008 和 0.890
  • An Approach to the Precise Chemoenzymatic Synthesis of <sup>13</sup>C-Labeled Sialyloligosaccharide on an Intact Glycoprotein:  A Novel One-Pot [3-<sup>13</sup>C]-Labeling Method for Sialic Acid Analogues by Control of the Reversible Aldolase Reaction, Enzymatic Synthesis of [3-<sup>13</sup>C]-NeuAc-α-(2→3)-[U-<sup>13</sup>C]-Gal-β-(1→4)-GlcNAc-β- Sequence onto Glycoprotein, and Its Conformational Analysis by Developed NMR Techniques
    作者:Tatsuo Miyazaki、Hajime Sato、Tohru Sakakibara、Yasuhiro Kajihara
    DOI:10.1021/ja994211j
    日期:2000.6.1
    A one-pot enzymatic C-13-labeling method for the 3-position of sialic acid (NeuAc) analogues has been developed using NeuAc aldolase, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADI-T), and nucleotide pyrophosphatase (NPP). This method consists of two steps, the first of which is degradation to 2-acetamido-2-deoxy-D-mannose (ManNAc) analogues. This degradation reaction was accelerated by a cofactor regeneration system which converts pyruvic acid into lactic acid using LDH, ADH, and beta-nicotinamide adenine dinucleotide oxidized form (beta-NAD(+)). The second step is condensation of the ManNAc analogue with [3-C-13]-pyruvic acid newly added after decomposition of the cofactor by nucleotide pyrophosphatase which play a role like switch to stop conversion of pyruvic acid into lactic acid. Five different NeuAc analogues have been labeled in good yields using this newly developed one-pot enzymatic procedure. Following conversion of [3-C-13]-NeuAc to CMP-[3-C-13]-NeuAc, enzymatic synthesis of [3-C-13]-NeuAc-alpha-(2-->3)-[U-C-13]-Gal-beta-(1-->4)-GlcNAc-beta-x-ovalbumin (x: hybrid type oligosaccharide) 23 and [3-C-13]-NeuAc-alpha-(2-->3)-[U-C-13]-Gal-beta-(1-->4)-GlcNAc-beta-OMe 26 (sialyl LacNAc) was performed using bovine beta-1,4-galactosyltransferase and rat recombinant alpha-2,3-sialyltransferase. The H-1 chemical shifts of all protons in [3-C-13]-NeuAc-alpha-(2-->3)-[U-C-13]-Gal-beta- on a glycoprotein were assigned by 2D HMQC, 1D HSQC-TOCSY, and the herein described 1D and 2D HSQC-TOCSY-NOESY-TOCSY method. More specifically, the 7-, 8-, and 9-protons of NeuAc could be observed by this HSQC-TOCSY-NOESY-TOCSY method even with only a single C-13 atom at the 3-position. In addition, 1D and 2D HMQC-NOESY spectra as well as carbon spin-lattice relaxation times (T-1) were measured to compare the conformational properties and dynamic behavior of the sialylgalactoside as part of the sialyl LacNAc 26 and when bound to a glycoprotein 23. These analyses suggested that the conformational properties of sialyl LacNAc are similar for both the conjugated and unconjugated forms, and that the torsional angle of the sialyl linkage, i.e., COOH-C2(NeuAc)-O-C3(Gal), is biased toward the anti (-146.7 degrees) conformation. In addition, the flexibility of galactosyl ring when bound to a glycoprotein appears to be significantly restricted by the attachment of NeuAc as compared with unconjugated sialyl LacNAc.
查看更多

同类化合物

阿拉伯糖基胸腺嘧啶 5'-三磷酸酯 阿拉伯呋喃糖基尿苷三磷酸酯 脱氧尿苷 5'-三磷酸酯 胸苷酸二钠 胸苷酸 胸苷二磷酸酯-L-鼠李糖 胸苷-5'-三磷酸 胸苷 3',5'-二磷酸酯 胸腺嘧啶脱氧核苷酸5-单磷酸对硝基苯酯钠盐 胞苷单磷酸酯-N-羟基乙酰基神经氨酸 胞苷5-(三氢二磷酸酯),化合物与2-氨基乙醇(1:1),单钠盐 胞苷5'-四磷酸酯 胞苷5'-单磷酸甲酯 胞苷-5’-二磷酸 胞苷-5’-三磷酸二钠盐 胞苷-5'-单磷酸-N-乙酰神经氨酸 胞苷 5’-单磷酸 胞苷 3',5'-二磷酸酯 胞苷 2ˊ,3ˊ-环一磷酸钠盐 胞磷托定 胞嘧啶-5'-二磷酸二钠 胞二磷胆碱 聚尿苷酸钾盐 聚(5-甲硫基尿苷单磷酸) 羟基甲基脱氧尿苷三磷酸酯 磷酸)二氢2'-脱氧-5-(甲氧基甲基)尿苷5'-( 碘脱氧尿苷酸 甲氨蝶呤5-氨基烯丙基-2'-脱氧尿苷5'-单磷酸酯 生物素-36-脱氧三磷酸胞苷 生物素-36-脱氧三磷酸尿苷 溴脱氧尿苷三磷酸酯 氨基嘧啶酮-4-二磷酸二胺-2-C-甲基-D-赤藓糖醇 尿苷酰基(2'->5')尿苷铵盐 尿苷二磷酸酯葡萄糖胺 尿苷二磷酸酯甘露糖 尿苷二磷酸酯半乳糖胺 尿苷二磷酸酯 N-乙酰基甘露糖胺 尿苷二磷酸酯 2-脱氧葡萄糖 尿苷二磷酰-N-乙酰基葡萄糖胺烯醇丙酮酸 尿苷5-单磷酸 尿苷5'-四磷酸酯 尿苷5'-二磷酸钠盐水合物 尿苷5'-二磷酰-alpha-D-葡萄糖-13C6二铵盐 尿苷5'-(三氢二磷酸酯)二钾盐 尿苷5'-(O-2-乙酰氨基-2-脱氧吡喃甘露糖酸-(1-4)-2-乙酰氨基-2-脱氧吡喃葡萄糖基二磷酸酯) 尿苷5'-(2-乙酰氨基-2-脱氧-ALPHA-D-葡糖基焦磷酸酯) 尿苷5'-(2-乙酰氨基-2,4-二脱氧-4-氟吡喃半乳糖基)二磷酸酯 尿苷3'-二磷酸酯5'-二磷酸酯 尿苷-半乳糖醛酸 尿苷-N-乙酰基葡萄糖胺糖醛酸