as well as cell proliferation and differentiation. Based on computer modeling (Fig. 2), the new perhydropyrrolizinone derivatives (−)-1a,b, decorated with two substituents, were selected and synthesized (Schemes 1–3). While enzymatic assays showed no biological activity, 15N,1H-HSQC-NMR spectroscopy revealed that (−)-1a,b bind to the WW recognition domain of Pin1, apparently in a mode that does not
在本文中,我们描述了抑制肽基脯
氨酰顺/反异构酶(P
PIase)
PIn1(一种致癌靶标)的高度取代的全氢
吡咯嗪酮的合成和
生物学评估。该酶选择性催化
磷酸化的
丝氨酸或苏
氨酸与脯
氨酸之间肽键的顺式/反式异构化,从而引起构象变化。这种结构修饰在许多细胞事件中起着重要作用,例如细胞周期进程,转录调控,RNA加工以及细胞增殖和分化。基于计算机建模(图2),新的全氢
吡咯烷酮衍
生物(-)- 1a,b选择并合成了用两个取代基修饰的,(方案1-3)。虽然酶法测定没有
生物学活性,但15 N,1 H-HSQC-NMR光谱显示(-)- 1a,b与
PIn1的WW识别域结合,显然以不抑制P
PIase活性的方式。为了使络合物进入更大的活性位点,而不是进入
PIn1的更紧密的WW结构域,并增强整体结合亲和力,我们设计了一个全氢
吡咯烷嗪支架,并用其他芳香族残基取代(图5)。已开发出针对此类化合物的新颖,直接的合成方法(方案4和5),外消旋化合物(±)-发现22a