Stepwise Evolution of Fragment Hits against MAPK Interacting Kinases 1 and 2
摘要:
Dysregulation of translation initiation factor 4E (eIF4E) activity occurs in various cancers. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) play a fundamental role in activation of eIF4E. Structure-activity relationship-driven expansion of a fragment hit led to discovery of dual MNK1 and MNK2 inhibitors based on a novel pyridine-benzamide scaffold. The compounds possess promising in vitro and in vivo pharmacokinetic profiles and show potent on target inhibition of eIF4E phosphorylation in cells.
established that a cyclopentadienyl RhIII complex with two phenyl groups and a pendant amide moiety catalyzes the formal Lossen rearrangement/[3+2] annulation cascade of N‐pivaloyl benzamides and acrylamides with alkynes leading to substituted indoles and pyrroles. Mechanistic studies revealed that this cascade reaction proceeds via not the Lossen rearrangement to form anilides or enamides but C−H bond cleavage
Rhodium(III)-Catalyzed C–H Activation and Annulation with 1-Alkynylphosphine Sulfides: A Mild and Regioselective Access for the Synthesis of Bulky Phosphine Ligands
作者:Bin Li、Jie Yang、Hong Xu、Haibin Song、Baiquan Wang
DOI:10.1021/acs.joc.5b02265
日期:2015.12.18
We reported herein rhodium(III)-catalyzed C–H activation and annulation reactions for the synthesis of bulky phosphine ligands by using 1-alkynylphosphine sulfides as key starting materials. In the presence of [Cp*RhCl2]2 (5 mol %) and CsOAc (2.0 equiv), various N-(pivaloyloxy)benzamides (3.0 equiv) could react smoothly with 1-alkynylphosphine sulfides at 40 °C in MeOH/CF3CH2OH cosolvent without external
precursors in reactions with thioethers under the catalysis of a commercially available Ru(II) complex, from which a variety of sulfimides were synthesized efficiently and mildly. If an allyl group is contained in the thioether precursor, the [2,3]-sigmatropic rearrangement of the sulfimide occurs simultaneously and the N-allyl-N-(thio)amides were obtained as the final products. Preliminary mechanistic studies
Rhodium(III)-Catalyzed C–H Activation/Annulation with Vinyl Esters as an Acetylene Equivalent
作者:Nicola J. Webb、Stephen P. Marsden、Steven A. Raw
DOI:10.1021/ol502095z
日期:2014.9.19
The behavior of electron-richalkenes in rhodium-catalyzed C–H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed.
Rhodium(III)-Catalyzed Controllable C−H Bond Functionalization of Benzamides and Vinylidenecyclopropanes: A Directing Group Determined Reaction Pathway
作者:Cheng Ji、Qin Xu、Min Shi
DOI:10.1002/adsc.201601308
日期:2017.3.20
A controllable rhodium(III)‐catalyzed C−H bond activation of benzamides and vinylidenecyclopropanes (VDCPs) by changing the directing group from C(O)NH–OPiv to C(O)NH–OBoc has been disclosed, affording two different major products in good yields under mild condition, respectively. The substrate scope has been investigated and a plausible reaction mechanism has been also proposed on the basis of previous