摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-methylbutane-1,2,3-tricarboxylic acid | 77370-41-3

中文名称
——
中文别名
——
英文名称
3-methylbutane-1,2,3-tricarboxylic acid
英文别名
3-methyl-1,2,3-butanetricarboxylic acid;3-methyl-butane-1,2,3-tricarboxylic acid;3-Methyl-butan-1,2,3-tricarbonsaeure;γ-Methyl-butan-α.β.γ-tricarbonsaeure;α.α'-Dimethyl-α-carboxy-glutarsaeure;2.2-Dimethyl-3-methylsaeure-pentandisaeure;3-Methylbutane-1,2,3-tricarboxylic Acid
3-methylbutane-1,2,3-tricarboxylic acid化学式
CAS
77370-41-3
化学式
C8H12O6
mdl
——
分子量
204.18
InChiKey
VMWJGTKDJFMTFZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 溶解度:
    DMSO(微溶)、甲醇(微溶、超声处理)

计算性质

  • 辛醇/水分配系数(LogP):
    -0.3
  • 重原子数:
    14
  • 可旋转键数:
    5
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.62
  • 拓扑面积:
    112
  • 氢给体数:
    3
  • 氢受体数:
    6

反应信息

点击查看最新优质反应信息

文献信息

  • Glass-Forming Properties of 3-Methylbutane-1,2,3-tricarboxylic Acid and Its Mixtures with Water and Pinonic Acid
    作者:Hans P. Dette、Mian Qi、David C. Schröder、Adelheid Godt、Thomas Koop
    DOI:10.1021/jp505910w
    日期:2014.8.28
    Moreover, we have determined the glass transition Tg′ of the maximal freeze-concentrated aqueous solution of 3-MBTCA, and Tg of mixtures of 3-MBTCA with water and pinonic acid. The latter data indicate a dependence of Tg upon the atomic oxygen-to-carbon ratio of the mixture, with implications for parametrizing the glass-forming behavior of α-pinene SOA particles in the atmosphere.
    3-甲基丁烷-1,2,3-三羧酸(3-MBTCA)是一种α-pine烯的大气氧化产物,已被确定为与大气萜烯二次有机气溶胶(SOA)颗粒最相关的示踪化合物。然而,对其诸如水的溶解度和相态(例如,液体,结晶,玻璃态)的理化性质知之甚少。为了获得知识,我们通过迈克尔加成反应,从2-甲基丙酸甲酯和马来酸二甲酯合成了3-MBCTA,随后进行了水解,总收率为78%。发现3-MBTCA在T m = 426±1 K熔化时转化为酸酐,从而妨碍了玻璃化转变温度T g的确定。通过差示扫描量热法(DSC)通过熔化和随后的冷却来实现。因此,我们设计了一种新颖的技术MARBLES(通过溶剂的低温蒸发而产生可降解的气溶胶),无需加热即可将物质转移至玻璃态。在MARBLES中,水溶液被雾化成湿的气溶胶颗粒,随后在数个扩散干燥器中干燥,从而形成玻璃杯中残留的几种溶质颗粒。将玻璃状气溶胶颗粒收集在撞击器中,直到积累了足够的质量,可以通过DSC确定样品的T
  • Chatterjee, Journal of the Indian Chemical Society, 1937, vol. 14, p. 127,132
    作者:Chatterjee
    DOI:——
    日期:——
  • The Potential Influence of Climate Change on Offshore Primary Production in Lake Michigan
    作者:Arthur S. Brooks、John C. Zastrow
    DOI:10.1016/s0380-1330(02)70608-4
    日期:2002.1
    This paper examines the potential influence of climate change on the primary productivity of Lake Michigan. Two general circulation models (GCMs) provided physical information on projected regional climate for the years 2030, 2050, and 2090. A 30-year record of meteorological data and limnological observations, from 1961 to through,1990, was used to define present, baseline conditions for the lake. GCM output was used to develop scenarios of future thermal characteristics, mixing patterns, and surface irradiance, which were then used to drive primary production calculations. Mean annual primary production for the base period was 116 g C/m(2). Under base conditions thermal stratification of the lake occurred on 13 June and extended 135 days until 26 October. Conditions projected for 2090 showed the mean date of stratification beginning as early as 5 April and remaining for 225 days until 20 November. Estimated mean annual primary production under these conditions totaled 113 g C/m(2), a decrease of 3% from the mean base value. Under the most extreme conditions of maximum projected cloud cover for 2090, primary production in that year could fall to 101 g C/m(2), a decrease of 13% from the base mean, or down 22% from maximum base production calculated under minimum base cloud cover conditions. The projected decrease may be attributed to physical/chemical constraints imposed on spring primary production by altered climate conditions. Early stratification would shorten the period of winter-spring mixing, during which time nutrients from the sediment are transported to the productive euphotic zone. The spring bloom was projected to diminish if early stratification capped the nutrient supply, and increased cloud cover reduced light input for photosynthesis. To a lesser extent fall production could also be reduced by the extension of the stratified period. Altered physical/chemical conditions influenced by a changing climate will be an important factor to consider in assessing future water quality conditions, primary production and the food web dynamics of the Great Lakes.
  • Tiemann; Kerschbaum, Chemische Berichte, 1900, vol. 33, p. 2938
    作者:Tiemann、Kerschbaum
    DOI:——
    日期:——
  • Treibs, Chemische Berichte, 1935, vol. 68, p. 1041
    作者:Treibs
    DOI:——
    日期:——
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物