An efficient Pd/C‐catalyzed synthesis of secondary amines involving C−N bond formation was achieved from amines and alcohols with H2O as the only byproduct. This common, green, commercial, and cheap catalyst was recycled five times in this sustainable, simple, and economic procedure.
Iridium(III)- benzoxazolyl and benzothiazolyl phosphine ligands catalyzed versatile alkylation reactions with alcohols and the synthesis of quinolines and indole
nyl) encountered ligands. The molecular structures of complexes 5c and 5e were crystallographically characterized. The dihedral angles of N (1)-C (1)-C (8)-C (9) showed an increasing twist compared with the corresponding ligand. The iridium (III) catalysts were screened, [Cp*IrCl2]2/4a proved to be the optimal catalyst, which exhibited efficient catalytic activity toward versatile alkylations including
manganese-catalyzed N-alkylation reaction of amines with alcohols via hydrogen autotransfer strategy has been demonstrated. The developed practical catalytic system including an inexpensive, nontoxic, commercially available MnCl2 or MnBr(CO)5 as the metal salt and triphenylphosphine as a ligand provides access to diverse aromatic, heteroaromatic, and aliphatic secondary amines in moderate-to-high yields
Under open-flask conditions in the presence of commercially available FeCl3·6H2O, N,N-disubstituted anilines can be converted into diversely functionalized benzidines with yields of up to 99%. Oxidative coupling was extended to N-monosubstituted anilines, and the method was applied to the efficient preparation of 6,6′-biquinoline. Mechanistic investigations have also been performed to explain the observed