Transesterification catalyzed by iron(III) β-diketonate species
摘要:
A practical and clean protocol for transesterification catalyzed by a 5 mol % cheap, non-toxic and moisture stable Fe(acac)(3) or other iron(III) beta-diketonate species in solvent, such as heptane under azeotropic condition is developed. A remarkable rate enhancement was observed upon the addition of 5 mol % of an inorganic base, such as Na2CO3, which suggests that faster formation of a dimeric mu-alkoxy-bridged iron (III) species under alkaline conditions facilitates catalytic turnover. This system provides smooth transesterification over a wide range of structurally diverse esters and alcohols without disturbing functional groups. In addition, the use of iron beta-diketonate complexes as catalysts is more environmentally friendly, safer, and economical than other transition-metal catalysts. Preliminary mechanistic studies indicate that the active catalyst is likely a dimeric mu-alkoxy-bridged iron(III) species, as determined by X-ray crystallography of [Fe(dbm)(2)(O-n-Bu)](2) derived from the alcoholysis of Fe(dbm)(3) under alkaline conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Nucleophilic Acyl Substitutions of Esters with Protic Nucleophiles Mediated by Amphoteric, Oxotitanium, and Vanadyl Species
作者:Chien-Tien Chen、Jen-Huang Kuo、Cheng-Hsiu Ku、Shiue-Shien Weng、Cheng-Yuan Liu
DOI:10.1021/jo0484878
日期:2005.2.1
[GRAPHICS]A diverse array of oxometallic species were examined as catalysts in nucleophilic acyl substitution (NAS) reactions of methyl (or ethyl) esters with protic nucleophiles. Among them, oxotitanium acetylacetonate (TiO(acac)(2)) and vanadyl chloride (VOCl2-(THF)(x)) served as the most efficient and water-tolerant catalysts. Transesterifications of methyl and/or ethyl esters with functionalized (including acid- or base-sensitive) 1degrees and 2degrees alcohols can be carried out chemoselectively in refluxed toluene or xylene in a 1:1 substrate stoichiometry using 1 mol % catalyst loading. The resultant products were furnished in 85-100% yields by simple aqueous workup to remove water-soluble catalysts. The new NAS protocol is also amenable to amines and thiols in 74-91% yields, albeit with higher loading (2.5 equiv) of protic nucleophiles. Representative examples of commercial interests such as Padimate 0 and antioxidant additives for plastics were also examined to demonstrate their practical applications. A 1:1 adduct between TiO(acac)2 and a given 1-octadecanol was identified as (C18H37O)(2)Ti(acac)(2) and was responsible for its subsequent NAS of methyl esters.
Transesterification catalyzed by iron(III) β-diketonate species
作者:Shiue-Shien Weng、Chih-Shueh Ke、Fong-Kuang Chen、You-Fu Lyu、Guan-Ying Lin
DOI:10.1016/j.tet.2011.01.009
日期:2011.3
A practical and clean protocol for transesterification catalyzed by a 5 mol % cheap, non-toxic and moisture stable Fe(acac)(3) or other iron(III) beta-diketonate species in solvent, such as heptane under azeotropic condition is developed. A remarkable rate enhancement was observed upon the addition of 5 mol % of an inorganic base, such as Na2CO3, which suggests that faster formation of a dimeric mu-alkoxy-bridged iron (III) species under alkaline conditions facilitates catalytic turnover. This system provides smooth transesterification over a wide range of structurally diverse esters and alcohols without disturbing functional groups. In addition, the use of iron beta-diketonate complexes as catalysts is more environmentally friendly, safer, and economical than other transition-metal catalysts. Preliminary mechanistic studies indicate that the active catalyst is likely a dimeric mu-alkoxy-bridged iron(III) species, as determined by X-ray crystallography of [Fe(dbm)(2)(O-n-Bu)](2) derived from the alcoholysis of Fe(dbm)(3) under alkaline conditions. (C) 2011 Elsevier Ltd. All rights reserved.