This invention relates to a biologically active formulation containing a conjugate of a fatty acid and a complex phenol. The fatty acid can be selected from a variety of fatty acids including acids have between 12 and 24 carbon atoms. The phenol can be a polynuclear phenol, a polyphenol or a polyfunctional phenol having a variety of substituents. The formulation can include pharmaceutically acceptable carrier, including diluent. The formulation can be provided in an active dosage form suitable to inhibit mammalian cell growth and/or metastasis of malignant cells. The formulation can be used to induce cytotoxicity in mammalian cells particularly tumor cells or to treat and prevent cellular injury or dysfunction.
Structural Properties of Docosahexaenoyl Phospholipid Bilayers Investigated by Solid-State <sup>2</sup>H NMR Spectroscopy
作者:Horia I. Petrache、Amir Salmon、Michael F. Brown
DOI:10.1021/ja011745n
日期:2001.12.19
the lipid bilayer. The present research has employed solid-state 2HNMRspectroscopy to acquire knowledge of the molecular organization and material properties of polyunsaturated lipid bilayers. We report measurements for a homologous series of mixed-chain phosphatidylcholines containing a perdeuterated, saturated acyl chain (n:0) at the sn-1 position, adjacent to docosahexaenoic acid (DHA, 22:6omega3)
The present invention describes compounds produced from an amino acid molecule and a fatty acid molecule. The compounds being in the form of amino-fatty acid compounds being bound by an anhydride linkage, or mixtures thereof made by reacting amino acids or derivatives thereof with an appropriate fatty acid previously reacted with a thionyl halide. The administration of such molecules provides supplemental amino acids with enhanced bioavailability and the additional benefits conferred by the specific fatty acid.
The present invention describes compounds produced from an amino acid molecule and a fatty acid molecule. The compounds being in the form of amino-fatty acid compounds being bound by an anhydride linkage, or mixtures thereof made by reacting amino acids or derivatives thereof with an appropriate fatty acid previously reacted with a thionyl halide. The administration of such molecules provides supplemental amino acids with enhanced bioavailability and the additional benefits conferred by the specific fatty acid.