摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(6-methoxy-2-naphthyl)propionylglycine | 42307-06-2

中文名称
——
中文别名
——
英文名称
2-(6-methoxy-2-naphthyl)propionylglycine
英文别名
2-(6'-Methoxy-2'-naphthyl)propionursaeure;N-[2-(6-methoxy-2-naphthyl)propionyl]glycine;2-[2-(6-methoxynaphthalen-2-yl)propanoylamino]acetic acid
2-(6-methoxy-2-naphthyl)propionylglycine化学式
CAS
42307-06-2
化学式
C16H17NO4
mdl
——
分子量
287.315
InChiKey
WHXDZYJGZCXWCX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    21
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    75.6
  • 氢给体数:
    2
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    2-(6-甲氧基-2-萘基)丙酸 在 palladium on activated charcoal 4-二甲氨基吡啶氢气N,N'-二环己基碳二亚胺 作用下, 以 四氢呋喃乙醇 为溶剂, 5.0 ℃ 、344.73 kPa 条件下, 反应 39.0h, 生成 2-(6-methoxy-2-naphthyl)propionylglycine
    参考文献:
    名称:
    布洛芬和萘普生的酯和酰胺前药:合成,抗炎活性和胃肠道毒性。
    摘要:
    合成了布洛芬(1)和萘普生(16)的酯和酰胺前药,并评估其抗炎活性和胃肠道毒性。前药的化学结构在亲脂性和对水解的反应性方面有所不同。小鼠中乙酸诱导的扭体的抑制表明前药7、15、19和20表现出比母体化合物明显更好的活性(p小于0.01)。确定大鼠口服1和16以及前药5、18、21和22后在胃粘膜中形成的平均溃疡数。除甘氨酸酰胺21外,所有前药对胃粘膜的刺激​​性均显着低于1或16。
    DOI:
    10.1002/jps.2600810210
点击查看最新优质反应信息

文献信息

  • Singh; Hingorani; Trivedi, Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 1990, vol. 29, # 6, p. 551 - 555
    作者:Singh、Hingorani、Trivedi
    DOI:——
    日期:——
  • Low-molecular-weight proteins as carriers for renal drug targeting. Preparation of drug-protein conjugates and drug-spacer derivatives and their catabolism in renal cortex homogenates and lysosomal lysates
    作者:Eric J. F. Franssen、Jaco Koiter、Caroline A. M. Kuipers、Andries P. Bruins、Frits Moolenaar、Dick De Zeeuw、Wim H. Kruizinga、Richard M. Kellogg、Dirk K. F. Meijer
    DOI:10.1021/jm00085a012
    日期:1992.4
    Low molecular weight proteins (LMWPs) are known to be reabsorbed and catabolized primarily by the proximal tubular cells of the kidneys. As such, LMWPs might serve as drug carriers that release drugs site-specifically in the kidney. We tested this concept in vitro by coupling different drugs to the LMWP lysozyme both directly (amide bond) and via different spacers: oligopeptides (amide bond), (poly-)alpha-hydroxy acids (ester bond), and a pH sensitive cis-aconityl spacer (amide bond). The capability of the kidney to release the parent drug from such drug-spacer derivatives and drug-LMWP conjugates by enzymatic or chemical hydrolysis of the bond was tested by incubation experiments in renal cortex homogenates and lysosomal lysates. Directly coupled conjugates of terminal carboxyl group containing drugs and lysozyme were catabolized to single amino acids, but did not result in release of the parent drug. The amide bond between the drug and the final amino acid (lysine) appeared to be stable in the incubation milieu. Different oligopeptide spacers coupled to the drugs showed similar results: the oligopeptide itself was cleaved but the amide bond between the drug and different single amino acids remained untouched. Only amide bonds of derivatives of carboxylic drugs with peptide structures themselves were cleaved. Some of the directly coupled conjugates of terminal amino drugs and oligopeptides showed clear release of the parent drug whereas others were stable. Terminal amino drugs were rapidly released from an acid-sensitive cis-aconityl spacer. Terminal carboxyl group containing drugs were enzymatically released from their glycolic and lactic ester spacers at different rates. These kinds of drugs were also released as parent drug from LMWP conjugates with ester spacers like L-lactic acid. Increasing spacer length by intercalating a tetra(L-lactic acid) molecule between the drug and the protein further increased the extent and rate of drug release, indicating increased accessability of the bond to the enzymes. Terminal amino group containing drugs were rapidly generated as parent drug from LMWP conjugates using an acid-sensitive spacer. In addition the conjugates were found to be adequately stable in plasma, considering their rapid clearance from the bloodstream. It is concluded that LMWPs may indeed be of use as carriers for specific renal delivery of drugs, since renal cortex homogenates and lysosomal lysates are able to catabolize the protein and generate the parent drug from drug-LMWP conjugates bearing suitable spacers. The option of enzymatic release is limited by the narrow specificity of the lysosomal enzymes. This has profound implications for the synthesis of suitable conjugates, since the nature of the drug itself, the type of bond, and also spacer length largely determine whether release of the parent drug will occur. Tailor-made spacers containing the correct mode of attachment and the right spacer length are required for this option. Chemical hydrolysis, using acid-sensitive linkers, is suggested as a viable alternative approach.
  • SINGH, PRITPAL;HINGORANI, L. L.;TRIVEDI, G. K., INDIAN J. CHEM. B , 29,(1990) N, C. 551-555
    作者:SINGH, PRITPAL、HINGORANI, L. L.、TRIVEDI, G. K.
    DOI:——
    日期:——
  • Ester and Amide Prodrugs of Ibuprofen and Naproxen: Synthesis, Anti-inflammatory Activity, and Gastrointestinal Toxicity
    作者:Vrinda R. Shanbhag、A. Michael Crider、Rajeev Gokhale、Anju Harpalani、Ronald M. Dick
    DOI:10.1002/jps.2600810210
    日期:1992.2
    Ester and amide prodrugs of ibuprofen (1) and naproxen (16) were synthesized and evaluated for anti-inflammatory activity and gastrointestinal toxicity. The chemical structure of the prodrugs was varied in terms of lipophilicity and reactivity toward hydrolysis. Inhibition of acetic acid-induced writhing in mice indicated that prodrugs 7, 15, 19, and 20 exhibited significantly better activity (p less
    合成了布洛芬(1)和萘普生(16)的酯和酰胺前药,并评估其抗炎活性和胃肠道毒性。前药的化学结构在亲脂性和对水解的反应性方面有所不同。小鼠中乙酸诱导的扭体的抑制表明前药7、15、19和20表现出比母体化合物明显更好的活性(p小于0.01)。确定大鼠口服1和16以及前药5、18、21和22后在胃粘膜中形成的平均溃疡数。除甘氨酸酰胺21外,所有前药对胃粘膜的刺激​​性均显着低于1或16。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物