Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air
作者:Rakesh Mondal、Gargi Chakraborty、Amit Kumar Guin、Susmita Sarkar、Nanda D. Paul
DOI:10.1021/acs.joc.1c00867
日期:2021.10.1
An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstitutedpyrimidines is described. A wide range of trisubstitutedpyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions
Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst
作者:Siuli Das、Rakesh Mondal、Amit Kumar Guin、Nanda D. Paul
DOI:10.1039/d1ob02428k
日期:——
yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electrontransfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template
在此,我们报告了以配体为中心的氧化还原控制的 Zn( II ) 催化的多组分合成嘧啶和三嗪的方法。利用以配体为中心的氧化还原事件,并使用明确定义的 Zn( II )-催化剂 ( 1a ) 轴承 ( E )-2-((4-氯苯基)二氮烯基)-1,10-菲咯啉 ( L 1a ) 作为通过脱氢醇官能化反应制备了氧化还原活性配体、多种取代的嘧啶和三嗪。嘧啶通过以下方法制备两条途径:(i)伯醇和仲醇与脒的脱氢偶联和(ii)伯醇与炔烃和脒的脱氢偶联。通过醇和脒的脱氢偶联制备三嗪。催化剂1a对多种底物具有良好的耐受性,能以中等至良好的分离产率产生所需的嘧啶和三嗪。进行了一系列控制反应来预测可能的机制,这表明以配体为中心的氧化还原事件的积极参与使得 Zn( II ) -配合物1a作为合成这些N-杂环的有效催化剂。在整个催化反应中,电子转移过程发生在偶氮芳族配体上,而 Zn( II ) 中心仅作为模板。
ORGANIC LIGHT-EMITTING DEVICE
申请人:Samsung Display Co., Ltd.
公开号:EP3185325A1
公开(公告)日:2017-06-28
According to one or more embodiments, an organic light-emitting device comprises: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode. The emission layer comprises a first compound represented by Formula 1, and at least one selected from the hole transport region and the electron transport region comprises a second compound represented by Formula 2A or 2B: