Discovery of potent liver-selective stearoyl-CoA desaturase-1 (SCD1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity
摘要:
SCD1 is a rate-limiting enzyme in the conversion of saturated fatty acids to monounsaturated fatty acids. SCD1 inhibitors have potential effects on obesity, diabetes, acne, and cancer, but the adverse effects associated with SCD1 inhibition in the skin and eyelids are impediments to clinical development. To avoid mechanism-based adverse effects, we explored the compounds that selectively inhibit SCD1 in the liver in an ex vivo assay. Starting from a systemically active lead compound, we focused on the physicochemical properties tPSA and cLogP to minimize exposure in the off-target tissues. This effort led to the discovery of thiazole-4-acetic acid analog 48 as a potent and liver-selective SCD1 inhibitor. Compound 48 exhibited significant effects in rodent models of diabetes, hepatic steatosis, and obesity, with sufficient safety margins in a rat toxicology study with repeated dosing. (C) 2018 Elsevier Masson SAS. All rights reserved.
Discovery of potent liver-selective stearoyl-CoA desaturase-1 (SCD1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity
摘要:
SCD1 is a rate-limiting enzyme in the conversion of saturated fatty acids to monounsaturated fatty acids. SCD1 inhibitors have potential effects on obesity, diabetes, acne, and cancer, but the adverse effects associated with SCD1 inhibition in the skin and eyelids are impediments to clinical development. To avoid mechanism-based adverse effects, we explored the compounds that selectively inhibit SCD1 in the liver in an ex vivo assay. Starting from a systemically active lead compound, we focused on the physicochemical properties tPSA and cLogP to minimize exposure in the off-target tissues. This effort led to the discovery of thiazole-4-acetic acid analog 48 as a potent and liver-selective SCD1 inhibitor. Compound 48 exhibited significant effects in rodent models of diabetes, hepatic steatosis, and obesity, with sufficient safety margins in a rat toxicology study with repeated dosing. (C) 2018 Elsevier Masson SAS. All rights reserved.
A Self-Immolative Spacer That Enables Tunable Controlled Release of Phenols under Neutral Conditions
作者:Kyle M. Schmid、Lasse Jensen、Scott T. Phillips
DOI:10.1021/jo300400q
日期:2012.5.4
A current challenge in the area of responsive materials is the design of reagents and polymers that provide controlled release of phenols in environments that are less polar than water. In these contexts, a molecular strategy that enables release of nearly any phenol with predictable and tunable rates and without complication from background hydrolysis would substantially increase the precision with which materials can be designed to respond to a particular signal. This Article addresses this problem at the fundamental level by describing the design, synthesis, and physical-organic characterization of two small molecule self-immolative spacers that are capable of releasing phenols in organic and mixed organic aqueous solutions. The rate of release from these small molecule model systems is predictable and tunable, such that nearly any type of phenol, regardless of pK(a) value, can be released in neutral solutions without complications from nonspecific background release due to hydrolysis. Furthermore, the release properties of the spacers can be predicted from bond length and conformation data (obtained from crystal structures). On the basis of these results, it should now be possible to incorporate these design elements into materials to enable precise response properties in environments that are not 100% aqueous.