Structure−Activity Relationship Studies of Novel Benzophenones Leading to the Discovery of a Potent, Next Generation HIV Nonnucleoside Reverse Transcriptase Inhibitor
摘要:
Despite the progress of the past two decades, there is still considerable need for safe, efficacious drugs that target human immunodeficiency virus (HIV). This is particularly true for the growing number of patients infected with virus resistant to currently approved HIV drugs. Our high throughput screening effort identified a benzophenone template as a potential nonnucleoside reverse transcriptase inhibitor (NNRTI). This manuscript describes our extensive exploration of the benzophenone structure-activity relationships, which culminated in the identification of several compounds with very potent inhibition of both wild type and clinically relevant NNRTI-resistant mutant strains of HIV. These potent inhibitors include 70h (GW678248), which has in vitro antiviral assay IC50 values of 0.5 nM against wild-type HIV, 1 nM against the K103N mutant associated with clinical resistance to efavirenz, and 0.7 nM against the Y181C mutant associated with clinical resistance to nevirapine. Compound 70h has also demonstrated relatively low clearance in intravenous pharmacokinetic studies in three species, and it is the active component of a drug candidate which has progressed to phase 2 clinical studies.
Structure−Activity Relationship Studies of Novel Benzophenones Leading to the Discovery of a Potent, Next Generation HIV Nonnucleoside Reverse Transcriptase Inhibitor
摘要:
Despite the progress of the past two decades, there is still considerable need for safe, efficacious drugs that target human immunodeficiency virus (HIV). This is particularly true for the growing number of patients infected with virus resistant to currently approved HIV drugs. Our high throughput screening effort identified a benzophenone template as a potential nonnucleoside reverse transcriptase inhibitor (NNRTI). This manuscript describes our extensive exploration of the benzophenone structure-activity relationships, which culminated in the identification of several compounds with very potent inhibition of both wild type and clinically relevant NNRTI-resistant mutant strains of HIV. These potent inhibitors include 70h (GW678248), which has in vitro antiviral assay IC50 values of 0.5 nM against wild-type HIV, 1 nM against the K103N mutant associated with clinical resistance to efavirenz, and 0.7 nM against the Y181C mutant associated with clinical resistance to nevirapine. Compound 70h has also demonstrated relatively low clearance in intravenous pharmacokinetic studies in three species, and it is the active component of a drug candidate which has progressed to phase 2 clinical studies.
OPTICAL RECORDING MEDIUM AND AZO METAL CHELATE COMPOUND
申请人:Mitsui Chemicals, Inc.
公开号:EP1997856A1
公开(公告)日:2008-12-03
The present invention is to provide an optical recording medium which is capable of performing good recording and reproducing by using a laser having a wavelength of 300 to 900 nm, a novel azo metal chelate compound, and a novel azo compound. Furthermore, the present invention is to provide an optical recording medium having an azo metal chelate compound in a recording layer.