摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N,N'-bis[2-[bis[carboxymethylen]amino]ethyl]-L-S-(2-pyridylthio)cysteine | 1234299-88-7

中文名称
——
中文别名
——
英文名称
N,N'-bis[2-[bis[carboxymethylen]amino]ethyl]-L-S-(2-pyridylthio)cysteine
英文别名
(2R)-2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]-3-(pyridin-2-yldisulfanyl)propanoic acid
N,N'-bis[2-[bis[carboxymethylen]amino]ethyl]-L-S-(2-pyridylthio)cysteine化学式
CAS
1234299-88-7
化学式
C20H28N4O10S2
mdl
——
分子量
548.595
InChiKey
XGYDGYFHIRMBFI-AWEZNQCLSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -7
  • 重原子数:
    36
  • 可旋转键数:
    20
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    260
  • 氢给体数:
    5
  • 氢受体数:
    16

反应信息

  • 作为反应物:
    参考文献:
    名称:
    通过磁各向异性提高主客体化学中的手性传感能力
    摘要:
    对映体分子通常在化学、生物学和药理学中发挥不同的功能。手性分析物相似的物理和化学性质给对映体的区分和定量带来了困难。我们在此报告了一种通过磁各向异性提高主客体化学中广泛使用的主体分子β-环糊精(β-CD)手性传感能力的有效方法。将刚性手性镧系元素结合标签附着在β-CD上,以放大主客体识别过程中核磁共振(NMR)信号的变化。与反磁性 β-CD 参考相比,在 β-CD 中安装顺磁性镧系元素离子大大增强了对映体辨别能力,高达 30 倍。此外,顺磁效应的大小可以根据镧系元素顺磁强度的不同范围进行调节。该方法显着提高了β-CD的手性传感能力,可应用于其他主体分子。从主体分子到客体分子的转移顺磁效应、赝接触位移(PCS)和顺磁弛豫增强(PRE)是确定手性分析物的绝对立体化学的有价值的结构限制。该策略不需要对分析物进行修改,并且是对依赖于手性分析物功能化的报道的分析方法的补充。
    DOI:
    10.1007/s11426-024-1989-y
  • 作为产物:
    描述:
    N,N-bis[2-[bis[2-(1,1-dimethylethoxy)-2-oxoethyl]amino]ethyl]-L-S-(2-pyridylthio)cysteine 在 三氟乙酸三异丙基硅烷 作用下, 以 二氯甲烷 为溶剂, 反应 24.0h, 以0.82 g的产率得到N,N'-bis[2-[bis[carboxymethylen]amino]ethyl]-L-S-(2-pyridylthio)cysteine
    参考文献:
    名称:
    Exofacial Protein Thiols as a Route for the Internalization of Gd(III)-Based Complexes for Magnetic Resonance Imaging Cell Labeling
    摘要:
    Four novel MRI Gd(III)-based probes have been synthesized and evaluated for their labeling properties on cultured cell lines K562, C6, and B16. The labeling strategy relies upon the fact that cells display a large number of reactive exofacial protein thiols (EPTs) that can be exploited as anchorage points for suitably activated MRI probes. The probes are composed of a Gd(III) chelate (based on either DO3A or DTPA) connected through a flexible linker to the 2-pyridyldithio chemical function for binding to EPTs. GdDO3A-based chelates could efficiently label cells (up to a level of 1.2 x 10(10) Gd(III) atoms/cell), whereas GdDTPA-based chelates showed poor or no cell labeling ability at all. Among the GdDO3A based compounds, that having the longest spacer (compound GdL1A) showed the best labeling efficacy. The mechanism of EPT mediated cell labeling by GdL1A involves probe internalization without sequestration of the Gd(III) chelate within subcellular structures such as endosomes.
    DOI:
    10.1021/jm901876r
点击查看最新优质反应信息

文献信息

  • Exofacial Protein Thiols as a Route for the Internalization of Gd(III)-Based Complexes for Magnetic Resonance Imaging Cell Labeling
    作者:Giuseppe Digilio、Valeria Menchise、Eliana Gianolio、Valeria Catanzaro、Carla Carrera、Roberta Napolitano、Franco Fedeli、Silvio Aime
    DOI:10.1021/jm901876r
    日期:2010.7.8
    Four novel MRI Gd(III)-based probes have been synthesized and evaluated for their labeling properties on cultured cell lines K562, C6, and B16. The labeling strategy relies upon the fact that cells display a large number of reactive exofacial protein thiols (EPTs) that can be exploited as anchorage points for suitably activated MRI probes. The probes are composed of a Gd(III) chelate (based on either DO3A or DTPA) connected through a flexible linker to the 2-pyridyldithio chemical function for binding to EPTs. GdDO3A-based chelates could efficiently label cells (up to a level of 1.2 x 10(10) Gd(III) atoms/cell), whereas GdDTPA-based chelates showed poor or no cell labeling ability at all. Among the GdDO3A based compounds, that having the longest spacer (compound GdL1A) showed the best labeling efficacy. The mechanism of EPT mediated cell labeling by GdL1A involves probe internalization without sequestration of the Gd(III) chelate within subcellular structures such as endosomes.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物