The invention is directed to quinoline derivatives as prostaglandin E type receptor antagonists useful for the treatment of EP4 mediated diseases or conditions, such as acute and chronic pain, osteoarthritis, rheumatoid arthritis and cancer. The derivatives have the following structure of formula (I): wherein A and B represents either a nitrogen atom or a CH group with the proviso that they cannot both simultaneously be CH, Q can represent a nitrogen or a carbon atom, and Y and Z are either a nitrogen atom, a N(O) group or a C(R
5
) group. Pharmaceutical compositions comprising the derivatives of formula (I) are also included.
The invention is directed to quinoline derivatives as prostaglandin E type receptor antagonists useful for the treatment of EP4 mediated diseases or conditions, such as acute and chronic pain, osteoarthritis, rheumatoid arthritis and cancer. The derivatives have the following structure of formula (I): wherein A and B represents either a nitrogen atom or a CH group with the proviso that they cannot both simultaneously be CH, Q can represent a nitrogen or a carbon atom, and Y and Z are either a nitrogen atom, a N(O) group or a C(R5) group. Pharmaceutical compositions comprising the derivatives of formula (I) are also included.
Copper-Catalyzed Synthesis of Masked (Hetero)Aryl Sulfinates
作者:May R. Merino、Xinlan A. F. Cook、David C. Blakemore、Ian B. Moses、Neal W. Sach、Andre Shavnya、Michael C. Willis
DOI:10.1021/acs.orglett.3c03621
日期:2024.4.12
Catalysis using substoichiometric copper facilitates the synthesis of masked (hetero)aryl sulfinates under mild, base-free conditions from aryl iodides and the commercial sulfonylation reagent sodium 1-methyl 3-sulfinopropanoate (SMOPS). The development of a tert-butyl ester variant of the SMOPS reagent allowed the use of aryl bromide substrates. The sulfones thus generated can be unmasked and functionalized