N-(5,5-diacetoxypent-1-yl)doxorubicin: a new intensely potent doxorubicin analog
摘要:
N-(5,5-Diacetoxypent-1-yl)doxorubicin (DAPDOX) (3), a new, water-soluble analogue of doxorubicin, has been synthesized by coupling doxorubicin with 5-oxopentane-1,1-diacetate in the presence of NaBH3CN. This analogue was designed to be converted to the corresponding aldehyde, N-(5-oxopent-1-yl)doxorubicin, in the presence of carboxylate hydrolases, enzymes that are ubiquitous in tissue. DAPDOX had a half-life of several days in 0.05 M phosphate or 0.05 M acetate buffer solution at pH 4.0. However, in 0.05 M phosphate buffer at pH 7.4 in the presence of 20 unit equiv of porcine liver carboxylate esterase, the half-life of DAPDOX was less than 1 min. N-(5-acetoxypent-1-yl)doxorubicin (4), which should give rise to N-(5-hydroxypent-1-yl)doxorubicin on esterase-mediated hydrolysis, and N-(pent-1-yl)doxorubicin (5), were also prepared for comparative biological studies. DAPDOX was 150 times more potent than doxorubicin at inhibiting the growth of Chinese hamster ovary (CHO) cells in culture. The compound retained the same degree of potency against a CHO subline 100-fold resistant to doxorubicin (CHO/DOX) that expressed elevated levels of P-glycoprotein. Compounds 4 and 5, on the other hand, were no more effective than doxorubicin at inhibiting the growth of CHO cells and were 4-7-fold less potent against the CHO/DOX subline. DAPDOX is representative of a new structural class of doxorubicin analogues with unique chemical and biological properties.
N-(5,5-diacetoxypent-1-yl)doxorubicin: a new intensely potent doxorubicin analog
摘要:
N-(5,5-Diacetoxypent-1-yl)doxorubicin (DAPDOX) (3), a new, water-soluble analogue of doxorubicin, has been synthesized by coupling doxorubicin with 5-oxopentane-1,1-diacetate in the presence of NaBH3CN. This analogue was designed to be converted to the corresponding aldehyde, N-(5-oxopent-1-yl)doxorubicin, in the presence of carboxylate hydrolases, enzymes that are ubiquitous in tissue. DAPDOX had a half-life of several days in 0.05 M phosphate or 0.05 M acetate buffer solution at pH 4.0. However, in 0.05 M phosphate buffer at pH 7.4 in the presence of 20 unit equiv of porcine liver carboxylate esterase, the half-life of DAPDOX was less than 1 min. N-(5-acetoxypent-1-yl)doxorubicin (4), which should give rise to N-(5-hydroxypent-1-yl)doxorubicin on esterase-mediated hydrolysis, and N-(pent-1-yl)doxorubicin (5), were also prepared for comparative biological studies. DAPDOX was 150 times more potent than doxorubicin at inhibiting the growth of Chinese hamster ovary (CHO) cells in culture. The compound retained the same degree of potency against a CHO subline 100-fold resistant to doxorubicin (CHO/DOX) that expressed elevated levels of P-glycoprotein. Compounds 4 and 5, on the other hand, were no more effective than doxorubicin at inhibiting the growth of CHO cells and were 4-7-fold less potent against the CHO/DOX subline. DAPDOX is representative of a new structural class of doxorubicin analogues with unique chemical and biological properties.
作者:David Farquhar、Abdallah Cherif、Elena Bakina、J. Arly Nelson
DOI:10.1021/jm9706980
日期:1998.3.1
N-(5,5-Diacetoxypent-1-yl)doxorubicin (1b) is an intensely cytotoxic doxorubicin analogue that retains full potency against tumor cells that express elevated levels of P-glycoprotein and are resistant to doxorubicin. 1b was designed to be hydrolyzed in the presence of carboxylate esterases to N-(5-oxypent-1-yl)doxorubicin, an aldehyde capable of existing in equilibrium with a cyclic carbinolamine. To investigate the structural determinants of potency for 1b, we have prepared a series of chemically related compounds in which various omega-[bis(acetoxy)]alkyl or omega-[bis(acetoxy)]alkoxyalkyl groups are substituted at the 3'-amino position of the daunosamine sugar. These groups were selected to assess the effect of chain length, oxygen substitution, and carbinolamine ring size on analogue potency. The compounds were evaluated for their ability to inhibit the in vitro growth of the following cell lines: (a) Chinese hamster ovary (CHO) cells, (b) a CHO cell mutant 100-fold resistant to doxorubicin that expresses elevated levels of P-glycoprotein, (c) a murine ductal cell pancreatic adenocarcinoma (Pane 02), and (d) a murine mammary carcinoma (CA 755). The most potent members of the series were those that could form a straight chain aldehyde intermediate after esterase-mediated hydrolysis of the omega-bis(acetoxy) groups and give rise to 5- or 6-membered ring carbinolamines. Analogues capable of forming 7-, 8-, or 9-membered carbinolamines were markedly less active. The N-methyl derivative of 1b, which cannot give rise to a cyclic carbinolamine, was 2 orders of magnitude less potent than 1b. A branched chain analogue, If, which contained a tertiary carbon atom adjacent to the omega-bis(acetoxy) groups, was also substantially less active than its nonbranched counterpart, 1a. These findings suggest that the chain length of the 3'-amino substituents and the ability of the derived aldehydes to form 5- or 6-membered carbinolamines are critical determinants of biologic potency.
N-(5,5-diacetoxypent-1-yl)doxorubicin: a new intensely potent doxorubicin analog
作者:Abdallah Cherif、David Farquhar
DOI:10.1021/jm00095a017
日期:1992.8
N-(5,5-Diacetoxypent-1-yl)doxorubicin (DAPDOX) (3), a new, water-soluble analogue of doxorubicin, has been synthesized by coupling doxorubicin with 5-oxopentane-1,1-diacetate in the presence of NaBH3CN. This analogue was designed to be converted to the corresponding aldehyde, N-(5-oxopent-1-yl)doxorubicin, in the presence of carboxylate hydrolases, enzymes that are ubiquitous in tissue. DAPDOX had a half-life of several days in 0.05 M phosphate or 0.05 M acetate buffer solution at pH 4.0. However, in 0.05 M phosphate buffer at pH 7.4 in the presence of 20 unit equiv of porcine liver carboxylate esterase, the half-life of DAPDOX was less than 1 min. N-(5-acetoxypent-1-yl)doxorubicin (4), which should give rise to N-(5-hydroxypent-1-yl)doxorubicin on esterase-mediated hydrolysis, and N-(pent-1-yl)doxorubicin (5), were also prepared for comparative biological studies. DAPDOX was 150 times more potent than doxorubicin at inhibiting the growth of Chinese hamster ovary (CHO) cells in culture. The compound retained the same degree of potency against a CHO subline 100-fold resistant to doxorubicin (CHO/DOX) that expressed elevated levels of P-glycoprotein. Compounds 4 and 5, on the other hand, were no more effective than doxorubicin at inhibiting the growth of CHO cells and were 4-7-fold less potent against the CHO/DOX subline. DAPDOX is representative of a new structural class of doxorubicin analogues with unique chemical and biological properties.