摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone | 959571-67-6

中文名称
——
中文别名
——
英文名称
1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone
英文别名
1-[2-[3-(4-nitrophenyl)-1-phenylpyrazol-4-yl]-5-pyridin-4-yl-2H-1,3,4-oxadiazol-3-yl]ethanone
1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone化学式
CAS
959571-67-6
化学式
C24H18N6O4
mdl
——
分子量
454.445
InChiKey
JMWKVYXLYOFBSX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    34
  • 可旋转键数:
    4
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.08
  • 拓扑面积:
    118
  • 氢给体数:
    0
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone3-甲基苯甲醛 在 potassium hydroxide 作用下, 以 乙醇 为溶剂, 生成 1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)-3-(m-tolyl)prop-2-en-1-one
    参考文献:
    名称:
    Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents
    摘要:
    A new series of 1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)-3-(aryl)prop-2-en-1-ones (5a-l) were synthesized by a simple and efficient synthetic protocol. The newly synthesized compounds were characterized by IR, H-1 NMR, C-13 NMR and Mass spectroscopy. The resulting structural diversity was screened for its antimicrobial activity the following bacterial and fungal strains: two Gram-positive bacteria [Staphylococcus aureus (MTCC-96), Streptococcus pyogenes (MTCC-442)], two Gram-negative bacteria [Escherichia coli (MTCC-443), Pseudomonas aeruginosa (MTCC-1688)] and three fungal species (C. albicans, A. niger and A. clavatus). Following this, in vitro cytotoxicity activity against HeLa cell lines was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay. The observations derived from the diverse assays were utilized for building classification models based on a binary QSAR approach termed recursive partitioning (RP) analysis to probe the physic-chemical properties influencing the SAR for molecules. The decision tree derived from RP analysis could highlight structural characteristics that discriminate the actives from inactives which can serve as guide to design molecules with improved potency. In silico ADME predictions were performed to gauge their pharmacokinetic, safety and drug likeness profile.
    DOI:
    10.1007/s00044-016-1511-4
  • 作为产物:
    参考文献:
    名称:
    Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents
    摘要:
    A new series of 1-(2-(3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)-3-(aryl)prop-2-en-1-ones (5a-l) were synthesized by a simple and efficient synthetic protocol. The newly synthesized compounds were characterized by IR, H-1 NMR, C-13 NMR and Mass spectroscopy. The resulting structural diversity was screened for its antimicrobial activity the following bacterial and fungal strains: two Gram-positive bacteria [Staphylococcus aureus (MTCC-96), Streptococcus pyogenes (MTCC-442)], two Gram-negative bacteria [Escherichia coli (MTCC-443), Pseudomonas aeruginosa (MTCC-1688)] and three fungal species (C. albicans, A. niger and A. clavatus). Following this, in vitro cytotoxicity activity against HeLa cell lines was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay. The observations derived from the diverse assays were utilized for building classification models based on a binary QSAR approach termed recursive partitioning (RP) analysis to probe the physic-chemical properties influencing the SAR for molecules. The decision tree derived from RP analysis could highlight structural characteristics that discriminate the actives from inactives which can serve as guide to design molecules with improved potency. In silico ADME predictions were performed to gauge their pharmacokinetic, safety and drug likeness profile.
    DOI:
    10.1007/s00044-016-1511-4
点击查看最新优质反应信息