Optimization of a series of quinazolinone-derived antagonists of CXCR3
摘要:
The evaluation of the CXCR3 antagonist AMG 487 in clinic trials was complicated due to the formation of an active metabolite. In this Letter, we will discuss the further optimization of the quinazolinone series that led to the discovery of compounds devoid of the formation of the active metabolite that was seen with AMG 487. In addition, these compounds also feature increased potency and good pharmacokinetic properties. We will also discuss the efficacy of the lead compound 34 in a mouse model of cellular recruitment induced by bleomycin. (C) 2009 Elsevier Ltd. All rights reserved.
[EN] COMPOUNDS USEFUL AS CSF1 MODULATORS<br/>[FR] COMPOSÉS UTILES EN TANT QUE MODULATEURS DU FACTEUR 1 DE STIMULATION DE COLONIES
申请人:REDX PHARMA PLC
公开号:WO2016051193A1
公开(公告)日:2016-04-07
This invention relates to novel compounds and to pharmaceutical compositions comprising the novel compounds. More specifically, the invention relates to compounds useful as Colony Stimulating Factor 1 Receptor (cFMS) modulators (e.g. cFMS inhibitors). This invention also relates to processes for preparing the compounds, uses of the compounds in treatment and methods of treatment employing the compounds. Specifically, the invention relates to the use of the compounds for the treatment of cancer and autoimmune diseases.
Compounds are provided that act as potent antagonists of the CCR1 receptor, and have in vivo anti-inflammatory activity. The compounds are generally aryl piperazine derivatives and are useful in pharmaceutical compositions, methods for the treatment of CCR1-mediated diseases, and as controls in assays for the identification of competitive CCR1 antagonists.
The evaluation of the CXCR3 antagonist AMG 487 in clinic trials was complicated due to the formation of an active metabolite. In this Letter, we will discuss the further optimization of the quinazolinone series that led to the discovery of compounds devoid of the formation of the active metabolite that was seen with AMG 487. In addition, these compounds also feature increased potency and good pharmacokinetic properties. We will also discuss the efficacy of the lead compound 34 in a mouse model of cellular recruitment induced by bleomycin. (C) 2009 Elsevier Ltd. All rights reserved.