A series of suberoylanilide hydroxamic acid (SAHA)-based non-hydroxamates was designed, synthesized, and evaluated for their histone deacetylase (HDAC) inhibitory activity. Among these, methyl sulfoxide 15 inhibited HDACs in enzyme assays and caused hyperacetylation of histone H4 while not inducing the accumulation of acetylated alpha-tubulin in HCT116 cells. (c) 2005 Elsevier Ltd. All rights reserved.
Novel Inhibitors of Human Histone Deacetylases: Design, Synthesis, Enzyme Inhibition, and Cancer Cell Growth Inhibition of SAHA-Based Non-hydroxamates
To find novel non-hydroxamate histonedeacetylase (HDAC) inhibitors, a series of compounds modeled after suberoylanilide hydroxamic acid (SAHA) was designed and synthesized. In this series, compound 7, in which the hydroxamic acid of SAHA is replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA. In cancer