Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase
摘要:
Dual inhibition of the prostaglandin (PG) and leukotriene (LT) biosynthetic pathway is supposed to be superior over single interference, both in terms of efficacy and side effects. Here, we present a novel class of dual microsomal PGE(2) synthase-1/5-lipoxygenase (5-LO) inhibitors based on the structure of pirinixic acid [PA, 2-(4-chloro-6-(2.3-dimethylphenylamino)pyrimidin-2-ylthio)acetic acid, compound 1]. Target-oriented structural modification of 1, particularly a substitution with extended n-alkyl or bulky aryl substituents and concomitant replacement of the 2.3-dimethylaniline by a biphenyl-4-yl-methane-amino residue, resulted in potent suppression of mPGES-1 and 5-LO activity, exemplified by 2-(4-(biphenyl-4-ylmethylamino)-6-chloropyrimidin-2-ylthio)octanoic acid (7b, IC50 = 1.3 and 1 mu M, respectively). Select compounds also potently reduced PGE(2) and 5-LO product formation in intact cells. Importantly, inhibition of cyclooxygenases-1/2 was significantly less pronounced. Taken together, these pirinixic acid derivatives constitute a novel class of dual mPGES-1/5-LO inhibitors with a promising pharmacologial profile and a potential for therapeutic use.
[EN] PYRAZOLO [4, 3-D] PYRIMIDINES USEFUL AS KINASE INHIBITORS<br/>[FR] PYRAZOLO[4,3-D]PYRIMIDINES UTILES EN TANT QU'INHIBITEURS DE KINASES
申请人:ORIGENIS GMBH
公开号:WO2012143144A1
公开(公告)日:2012-10-26
The present invention relates to novel compounds of formula (I) that are capable of inhibiting one or more kinases, especially SYK (Spleen Tyrosine Kinase), LRRK2 (Leucine-rich repeat kinase 2) and/or MYLK (Myosin light chain kinase) or mutants thereof. The compounds find applications in the treatment of a variety of diseases. These diseases include autoimmune diseases, inflammatory diseases, bone diseases, metabolic diseases, neurological and neurodegenerative diseases, cancer, cardiovascular diseases, allergies, asthma, alzheimer's disease, parkinson's disease, skin disorders, eye diseases, infectious diseases and hormone-related diseases.
The present invention provides 2,4-pyrimidinediamine compounds that inhibit the IgE and/or IgG receptor signaling cascades that lead to the release of chemical mediators, intermediates and methods of synthesizing the compounds and methods of using the compounds in a variety of contexts, including in the treatment and prevention of diseases characterized by, caused by or associated with the release of chemical mediators via degranulation and other processes effected by activation of the IgE and/or IgG receptor signaling cascades.
[EN] NOVEL KINASE INHIBITORS<br/>[FR] NOUVEAUX INHIBITEURS DE KINASES
申请人:ORIGENIS GMBH
公开号:WO2014060113A1
公开(公告)日:2014-04-24
The present invention relates to novel compounds of formula (I) that are capable of inhibiting one or more kinases, especially SYK (Spleen Tyrosine Kinase), LRRK2 (Leucine-rich repeat kinase 2) and/or MYLK (Myosin light chain kinase) or mutants thereof. The compounds find applications in the treatment of a variety of diseases. These diseases include autoimmune diseases, inflammatory diseases, bone diseases, metabolic diseases, neurological and neurodegenerative diseases, cancer, cardiovascular diseases, allergies, asthma, alzheimer's disease, parkinson's disease, skin disorders, eye diseases, infectious diseases and hormone-related diseases.
The present invention provides 2,4-pyrimidinediamine compounds that inhibit the IgE and/or IgG receptor signaling cascades that lead to the release of chemical mediators, intermediates and methods of synthesizing the compounds and methods of using the compounds in a variety of contexts, including in the treatment and prevention of diseases characterized by, caused by or associated with the release of chemical mediators via degranulation and other processes effected by activation of the IgE and/or IgG receptor signaling cascades.
The present invention provides 2,4-pyrimidinediamine compounds that inhibit the IgE and/or IgG receptor signaling cascades that lead to the release of chemical mediators, intermediates and methods of synthesizing the compounds and methods of using the compounds in a variety of contexts, including in the treatment and prevention of diseases characterized by, caused by or associated with the release of chemical mediators via degranulation and other processes effected by activation of the IgE and/or IgG receptor signaling cascades.