ABSTRACT
The acyl coenzyme A (acyl-CoA) dehydrogenases (ACADs) FadE34 and CasC, encoded by the cholesterol and cholate gene clusters of
Mycobacterium tuberculosis
and
Rhodococcus jostii
RHA1, respectively, were successfully purified. Both enzymes differ from previously characterized ACADs in that they contain two fused acyl-CoA dehydrogenase domains in a single polypeptide. Site-specific mutagenesis showed that only the C-terminal ACAD domain contains the catalytic glutamate base required for enzyme activity, while the N-terminal ACAD domain contains an arginine required for ionic interactions with the pyrophosphate of the flavin adenine dinucleotide (FAD) cofactor. Therefore, the two ACAD domains must associate to form a single active site. FadE34 and CasC were not active toward the 3-carbon side chain steroid metabolite 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4BNC-CoA) but were active toward steroid CoA esters containing 5-carbon side chains. CasC has similar specificity constants for cholyl-CoA, deoxycholyl-CoA, and 3β-hydroxy-5-cholen-24-oyl-CoA, while FadE34 has a preference for the last compound, which has a ring structure similar to that of cholesterol metabolites. Knockout of the
casC
gene in
R. jostii
RHA1 resulted in a reduced growth on cholate as a sole carbon source and accumulation of a 5-carbon side chain cholate metabolite. FadE34 and CasC represent unique members of ACADs with primary structures and substrate specificities that are distinct from those of previously characterized ACADs.
IMPORTANCE
We report here the identification and characterization of acyl-CoA dehydrogenases (ACADs) involved in the metabolism of 5-carbon side chains of cholesterol and cholate. The two homologous enzymes FadE34 and CasC, from
M. tuberculosis
and
Rhodococcus jostii
RHA1, respectively, contain two ACAD domains per polypeptide, and we show that these two domains interact to form a single active site. FadE34 and CasC are therefore representatives of a new class of ACADs with unique primary and quaternary structures. The bacterial steroid degradation pathway is important for the removal of steroid waste in the environment and for survival of the pathogen
M. tuberculosis
within host macrophages. FadE34 is a potential target for development of new antibiotics against tuberculosis.
摘要
由结核分枝杆菌胆固醇和胆酸基因簇编码的酰基辅酶 A(酰基-CoA)脱氢酶(ACADs)FadE34 和 CasC
结核分枝杆菌
和
结核分枝杆菌
RHA1 编码的 FadE34 和 CasC 已成功纯化。这两种酶与之前表征的 ACAD 不同,它们在单个多肽中含有两个融合的酰基-CoA 脱氢酶结构域。位点特异性诱变显示,只有 C 端 ACAD 结构域含有酶活性所需的催化谷氨酸碱基,而 N 端 ACAD 结构域含有与黄素腺嘌呤二核苷酸(FAD)辅助因子的焦磷酸离子相互作用所需的精氨酸。因此,两个 ACAD 结构域必须结合在一起才能形成一个活性位点。FadE34 和 CasC 对 3 碳侧链类固醇代谢物 3-氧代-23,24-双去甲胆-4-烯-22-酰基-CoA(4BNC-CoA)没有活性,但对含有 5 碳侧链的类固醇 CoA 酯有活性。CasC 对胆酰-CoA、脱氧胆酰-CoA 和 3β-羟基-5-胆烯-24-酰基-CoA 具有相似的特异性常数,而 FadE34 则偏好最后一种化合物,其环状结构与胆固醇代谢物相似。敲除
casC
基因的
R. jostii
RHA1 中的 casC 基因敲除会导致以胆酸盐为唯一碳源的生长减弱,并导致 5 碳侧链胆酸盐代谢物的积累。FadE34 和 CasC 是 ACADs 的独特成员,它们的主要结构和底物特异性与之前表征的 ACADs 不同。
重要意义
我们在此报告了参与胆固醇和胆酸盐 5 碳侧链代谢的酰基-CoA 脱氢酶(ACADs)的鉴定和特征描述。来自结核杆菌的两种同源酶 FadE34 和 CasC
结核杆菌
和
Rhodococcus jostii
我们的研究表明,这两个结构域相互作用形成了一个单一的活性位点。因此,FadE34 和 CasC 是具有独特一级和四级结构的新型 ACAD 的代表。细菌类固醇降解途径对清除环境中的类固醇废物和病原体的生存非常重要
结核杆菌
在宿主巨噬细胞内生存的重要途径。FadE34 是开发抗结核新抗生素的潜在靶点。