摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(Z)-methyl2-((4-nitrophenyl)(2,4,6-trioxohexahydropyrimidin-5-yl)methylene)hydrazinecarboxylate | 1551641-61-2

中文名称
——
中文别名
——
英文名称
(Z)-methyl2-((4-nitrophenyl)(2,4,6-trioxohexahydropyrimidin-5-yl)methylene)hydrazinecarboxylate
英文别名
methyl N-[(Z)-[(4-nitrophenyl)-(2,4,6-trioxo-1,3-diazinan-5-yl)methylidene]amino]carbamate
(Z)-methyl2-((4-nitrophenyl)(2,4,6-trioxohexahydropyrimidin-5-yl)methylene)hydrazinecarboxylate化学式
CAS
1551641-61-2
化学式
C13H11N5O7
mdl
——
分子量
349.26
InChiKey
UGRFKXPULXXIFM-CXUHLZMHSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.5
  • 重原子数:
    25
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.15
  • 拓扑面积:
    172
  • 氢给体数:
    3
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    肼基甲酸甲酯5-(4-nitrobenzoyl)pyrimidine-2,4,6-trione甲醇 为溶剂, 反应 3.0h, 以92%的产率得到(Z)-methyl2-((4-nitrophenyl)(2,4,6-trioxohexahydropyrimidin-5-yl)methylene)hydrazinecarboxylate
    参考文献:
    名称:
    Synthesis and antifungal activity of substituted 2,4,6-pyrimidinetrione carbaldehyde hydrazones
    摘要:
    Opportunistic fungal infections caused by the Candida spp. are the most common human fungal infections, often resulting in severe systemic infections-a significant cause of morbidity and mortality in at-risk populations. Azole antifungals remain the mainstay of antifungal treatment for candidiasis, however development of clinical resistance to azoles by Candida spp. limits the drugs' efficacy and highlights the need for discovery of novel therapeutics. Recently, it has been reported that simple hydrazone derivatives have the capability to potentiate antifungal activities in vitro. Similarly, pyrimidinetrione analogs have long been explored by medicinal chemists as potential therapeutics, with more recent focus being on the potential for pyrimidinetrione antimicrobial activity. In this work, we present the synthesis of a class of novel hydrazone-pyrimidinetrione analogs using novel synthetic procedures. In addition, structure-activity relationship studies focusing on fungal growth inhibition were also performed against two clinically significant fungal pathogens. A number of derivatives, including phenylhydrazones of 5-acylpyrimidinetrione exhibited potent growth inhibition at or below 10 mu M with minimal mammalian cell toxicity. In addition, in vitro studies aimed at defining the mechanism of action of the most active analogs provide preliminary evidence that these compound decrease energy production and fungal cell respiration, making this class of analogs promising novel therapies, as they target pathways not targeted by currently available antifungals. (C) 2013 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2013.12.010
点击查看最新优质反应信息

文献信息

  • Synthesis and antifungal activity of substituted 2,4,6-pyrimidinetrione carbaldehyde hydrazones
    作者:Donna M. Neumann、Amy Cammarata、Gregory Backes、Glen E. Palmer、Branko S. Jursic
    DOI:10.1016/j.bmc.2013.12.010
    日期:2014.1
    Opportunistic fungal infections caused by the Candida spp. are the most common human fungal infections, often resulting in severe systemic infections-a significant cause of morbidity and mortality in at-risk populations. Azole antifungals remain the mainstay of antifungal treatment for candidiasis, however development of clinical resistance to azoles by Candida spp. limits the drugs' efficacy and highlights the need for discovery of novel therapeutics. Recently, it has been reported that simple hydrazone derivatives have the capability to potentiate antifungal activities in vitro. Similarly, pyrimidinetrione analogs have long been explored by medicinal chemists as potential therapeutics, with more recent focus being on the potential for pyrimidinetrione antimicrobial activity. In this work, we present the synthesis of a class of novel hydrazone-pyrimidinetrione analogs using novel synthetic procedures. In addition, structure-activity relationship studies focusing on fungal growth inhibition were also performed against two clinically significant fungal pathogens. A number of derivatives, including phenylhydrazones of 5-acylpyrimidinetrione exhibited potent growth inhibition at or below 10 mu M with minimal mammalian cell toxicity. In addition, in vitro studies aimed at defining the mechanism of action of the most active analogs provide preliminary evidence that these compound decrease energy production and fungal cell respiration, making this class of analogs promising novel therapies, as they target pathways not targeted by currently available antifungals. (C) 2013 Elsevier Ltd. All rights reserved.
查看更多