A new family of phosphinthiourea catalysts was developed for the highly enantioselective synthesis of 2-aryl-2,5-hydropyrroles via a [3 + 2] cycloaddition of an electron-deficient allene with aryl and heteroaryl diphenylphosphinoylimines. The presence of both H(2)O and Et(3)N as additives was found to be important for achieving optimal rates. Dual activation of both nucleophile and electrophile by the bifunctional catalyst is invoked to account for the observed high reactivity and enantioselectivity.
Highly Enantioselective, Intermolecular Hydroamination of Allenyl Esters Catalyzed by Bifunctional Phosphinothioureas
摘要:
Bifunctional phosphinothiourea catalysts have been developed successfully for the highly regio- and enantioselective gamma-hydroamination of allenyl and propargyl esters with N-methoxy carbamate nucleophiles to yield alpha,beta-unsaturated gamma-amino acid ester products. In the case of propargyl ester substrates, the reaction proceeds through reversible phosphinothiourea-catalyzed isomerization to the corresponding allenyl ester. The high enantioselectivity of the process is attributed to a cooperative conjugate addition of a thiourea-bound carbamate anion to a vinyl phosphonium ion resulting from covalent activation of the allenyl ester substrate.
A new family of phosphinthiourea catalysts was developed for the highly enantioselective synthesis of 2-aryl-2,5-hydropyrroles via a [3 + 2] cycloaddition of an electron-deficient allene with aryl and heteroaryl diphenylphosphinoylimines. The presence of both H(2)O and Et(3)N as additives was found to be important for achieving optimal rates. Dual activation of both nucleophile and electrophile by the bifunctional catalyst is invoked to account for the observed high reactivity and enantioselectivity.