Carbocycles Related to Oseltamivir as Influenza Virus Group-1-Specific Neuraminidase Inhibitors. Binding to N1 Enzymes in the Context of Virus-like Particles
摘要:
We report here the exploitation of the 150-cavity in the active sites of group-1 neuraminidases for the design of new triazole-containing carbocycles related to oseltamivir. Inhibition studies with virus-like particles (VLPs) containing the influenza virus neuraminidase-1 (NI) activity indicate that several candidates are inhibitors, with K(i) values in the 10(-5)-10(-8) M range. In contrast, a known candidate that preserves the free amino group and a new candidate containing a guanidine function are better inhibitors, with K(i) values of 1.5 x 10(-9) and 4.6 x 10(-10) M, respectively. The most active inhibitor of the N1 enzyme in the triazole series was selective for the N1 class and showed significantly less inhibition (K(i) = 2.6 mu M vs 0.07 mu M) of the free influenza virus neuraminidase-2 (N2). In addition, saturation transfer difference (STD) NMR spectroscopic studies with this compound and the VLPs show that the entire molecule forms contacts with residues in the active site. These data taken together support our proposed binding mode in which the active site and the adjoining 150-cavity are both occupied.
Carbocycles Related to Oseltamivir as Influenza Virus Group-1-Specific Neuraminidase Inhibitors. Binding to N1 Enzymes in the Context of Virus-like Particles
摘要:
We report here the exploitation of the 150-cavity in the active sites of group-1 neuraminidases for the design of new triazole-containing carbocycles related to oseltamivir. Inhibition studies with virus-like particles (VLPs) containing the influenza virus neuraminidase-1 (NI) activity indicate that several candidates are inhibitors, with K(i) values in the 10(-5)-10(-8) M range. In contrast, a known candidate that preserves the free amino group and a new candidate containing a guanidine function are better inhibitors, with K(i) values of 1.5 x 10(-9) and 4.6 x 10(-10) M, respectively. The most active inhibitor of the N1 enzyme in the triazole series was selective for the N1 class and showed significantly less inhibition (K(i) = 2.6 mu M vs 0.07 mu M) of the free influenza virus neuraminidase-2 (N2). In addition, saturation transfer difference (STD) NMR spectroscopic studies with this compound and the VLPs show that the entire molecule forms contacts with residues in the active site. These data taken together support our proposed binding mode in which the active site and the adjoining 150-cavity are both occupied.
The present invention provides in part a compound of Formula (I) or a pharmaceutically-acceptable salt or stereoisomer thereof: where R
1
is selected from the group consisting of a substituted triazole group, a guanidine group, a urea group, a thiourea group, an amidine group, and N
3
; and R
2
is selected from the group consisting of H, Me, Et and an amino acid, and methods and uses thereof.
ANTI-FIBROTIC SIALIDASE INHIBITOR COMPOUNDS AND METHODS OF USE
申请人:The Texas A&M University System
公开号:US20190201485A1
公开(公告)日:2019-07-04
The present disclosure relates to anti-fibrotic sialidase-inhibitor compounds and methods of preventing or inhibiting fibrosis using such compounds. The present disclosure also relates to methods of controlling the formation of fibrocytes or their activity using such compounds. The compounds may include both antibodies as well as small molecules. The methods may involve administering the compounds to a patient with or at risk of developing fibrosis in a manner that inhibits at least one sialidase in the patient.
Carbocycles Related to Oseltamivir as Influenza Virus Group-1-Specific Neuraminidase Inhibitors. Binding to N1 Enzymes in the Context of Virus-like Particles
作者:Sankar Mohan、Sarah McAtamney、Thomas Haselhorst、Mark von Itzstein、Brian Mario Pinto
DOI:10.1021/jm100822f
日期:2010.10.28
We report here the exploitation of the 150-cavity in the active sites of group-1 neuraminidases for the design of new triazole-containing carbocycles related to oseltamivir. Inhibition studies with virus-like particles (VLPs) containing the influenza virus neuraminidase-1 (NI) activity indicate that several candidates are inhibitors, with K(i) values in the 10(-5)-10(-8) M range. In contrast, a known candidate that preserves the free amino group and a new candidate containing a guanidine function are better inhibitors, with K(i) values of 1.5 x 10(-9) and 4.6 x 10(-10) M, respectively. The most active inhibitor of the N1 enzyme in the triazole series was selective for the N1 class and showed significantly less inhibition (K(i) = 2.6 mu M vs 0.07 mu M) of the free influenza virus neuraminidase-2 (N2). In addition, saturation transfer difference (STD) NMR spectroscopic studies with this compound and the VLPs show that the entire molecule forms contacts with residues in the active site. These data taken together support our proposed binding mode in which the active site and the adjoining 150-cavity are both occupied.