(<i>E</i>)- and (<i>Z</i>)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-2-butenes: Synthetic Equivalents for the 1-(1,3-Butadienyl) Anion and the 1,1-(1,3-Butadienyl) Dianion
作者:Timothy P. Meagher、Larry Yet、Chi-Nung Hsiao、Harold Shechter
DOI:10.1021/jo970545k
日期:1998.6.1
(E)- and (Z)-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butenes (7 and 8) are converted by n-BuLi to (E)- and (Z)-1-lithio-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butenes (15 and 16) with retention of initial stereochemistries. Reactions of 15 and 16 with electrophiles (protio and deuterio acids, primary, secondary, and benzyl halides, chloroformates, chlorothioformates, acid chlorides, epoxides, trialkylsilyl chlorides, and triethylgermanyl chloride) in THF or THF/HMPA give the corresponding (E)- and (Z)-1-(phenylsulfonyl)-1-substituted-4-(trimethylsilyl)-2-butenes (32) with stereochemical retention. That beta,gamma-unsaturated silyl sulfones 32 are formed instead of their alpha,beta-unsaturated (conjugated) isomers are attributed to stabilizing multiple anionic and cationic hyperconjugation and to steric effects as in 29-31. Of importance in synthesis is that 32 are eliminated by TBAF at -20 to 0 degrees C, thermally, or by column chromatography to (E)- (100 to > 93%) rather than (Z)-1-substituted-1,3-butadienes (38). Further, 32 undergo conversions by n-BuLi and various alkylating agents to (unconjugated) 1-(phenylsulfonyl)-1,1-disubstituted-4-(trimethylsilyl)-2-butenes (46) with retention of stereochemistry; Eliminations of 46 by fluoride ion, acid catalysis, or heat yield 1,1-disubstituted-1,3-butadienes (53). Silyl sulfones 7 and 8 are thus synthetic equivalents for the (E)-1-(1,3-butadienyl) anion (44) and the 1,1-(1,3-butadienyl) dianion(57). Silyl sulfones 7 and 8 also undergo efficient stereospecific intramolecular conversions by n-BuLi and alpha,omega-dihalides to 1,1-cycloalka-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butenes (62 and 71) that are eliminated by fluoride ion, heat, or adsorption chromatography to 1,1-cycloalka-1,3-butadienes (72).
(E)- 和 (Z)-1-(苯砜基)-4-(三甲基硅基)-2-丁二烯(7 和 8)通过 n-BuLi 转化为 (E)- 和 (Z)-1- Chunky -1-(苯砜基)-4-(三甲基硅基)-2-丁二烯(15 和 16),并保留了初始立体化学。15 和 16 与电rophiles(质子和 Deuterio 酸、一级、二级、苯基卤素、氯仿酸、氯砜酸、酸酐、醚、三甲基硅基氯化物和三乙基 germanium 氯化物)在 THF 或 THF/HMPA 中反应,产生对应的 (E)- 和 (Z)-1-(苯砜基)-1-取代的-4-(三甲基硅基)-2-丁二烯(32),并保留了立体化学。由于β,γ-未饱和硅基硫醇 32 比其 α,β-未饱和(共轭)异构体更稳定,是因为它们通过多个 anionic 和 cationic 力的结合。
在合成中很重要的是,32 可以通过 TBAF 在 -20 到 0°C 的温度下脱除,或者通过柱状色谱从 (E)-(>93% 到 100%)转化为 1-取代-1,3-丁二烯(38)。此外,32 还可以通过 n-BuLi 和各种烷化剂转化为(非共轭)1-(苯基硫醇)-1,1-双取代的-4-(三甲基硅基)-2-丁二烯(46),保留立体化学。46 消除后通过氟离子、酸性催化或加热产生 1,1-取代-1,3-丁二烯(53)。
因此,7 和 8 的硅基硫醇是生成(E)-1-(1,3-丁二烯基)阴离子(44)和 1,1-(1,3-丁二烯基)二阴离子(57)的合成等效物。此外,7 和 8 还在 n-BuLi 和 alpha,omega-二卤物的参与下发生高效的立体选择性 intramolecular 转化,生成 1,1-环状结构化的-(苯基硫醇)-4-(三甲基硅基)-2-丁二烯(62 和 71),并通过氟离子、加热或吸附色谱法消除,得到 1,1-环状结构化的-1,3-丁二烯(72)。