Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite
作者:Ryo Ishii、Takuji Ikeda、Tetsuji Itoh、Takeo Ebina、Toshirou Yokoyama、Takaaki Hanaoka、Fujio Mizukami
DOI:10.1039/b610088k
日期:——
We have developed microporous organicâinorganic hybrid nanocomposites by alkoxysilylation of 4,4â²-biphenyl-bridged alkoxysilane compounds, which contain triethoxysilyl, methyldiethoxysilyl, and dimethylethoxysilyl groups at each end of the 4,4â²-biphenylene unit ((CH3)n(C2H5O)3ân-Si-C12H8-Si-(OC2H5)3ân(CH3)n, n = 0, 1, or 2, abbreviated as BESB(0), BESB(2), or BESB(4), respectively, where the number in parentheses indicates the number of methyl groups in these molecules), in the interlayer of a crystalline layered silicate, ilerite. XRD, 29Si solid-state NMR and fluorescence spectroscopy revealed the immobilization and bridging formation of the BESB molecules between the silicate layers by condensation, not only with H-ilerite, but also with the BESB molecules. The interlayer structures exhibited different molecular arrangements. BESB(0) and BESB(4) molecules are present as a monolayer arrangement in which BESB(0) molecules form the oligomeric species caused by close stacking like a dimer. BESB(2) molecules form mainly bilayer-like aggregates in the interlayer. The structural differences are caused by the different reactivities of the BESB molecules, which control their polymerization in the interlayer. The resultant BESB(0)- and BESB(2)-ilerite had high microporosity with BET surface areas (508 and 578 m2 gâ1 for BESB(0)- and BESB(2)-ilerite, respectively). The micropores showed higher toluene adsorptivity than several other porous silica materials due to the successful surface modification. Consequently, this approach provides a new method for constructing novel microporous nanocomposites, the key to improved selectivity and activity in separation and catalytic applications.
我们通过对4,4'-联苯桥接的烷氧基硅烷化合物进行烷氧基硅烷化,开发了微孔有机-无机混合纳米复合材料,这些化合物在每个4,4'-联苯单元的末端含有三乙氧基硅基、甲基二乙氧基硅基和二甲基乙氧基硅基团((CH3)n(C2H5O)3-n-Si-C12H8-Si-(OC2H5)3-n(CH3)n,n = 0、1或2,分别简称为BESB(0)、BESB(2)和BESB(4),其中括号中的数字表示这些分子中的甲基数量),并且它们嵌入在结晶层状硅酸盐(搭石)之间。XRD、29Si固态NMR和荧光光谱揭示,BESB分子通过缩合固定化并形成桥接,既与H-搭石,也与BESB分子之间形成相互作用。层间结构表现出不同的分子排列。BESB(0)和BESB(4)分子以单层排列的形式存在,其中BESB(0)分子由于紧密堆积形成与二聚体相似的低聚物种。BESB(2)分子主要在层间形成双层状聚集体。这些结构差异是由于BESB分子的反应性不同,从而控制它们在层间的聚合。最终得到的BESB(0)-和BESB(2)-搭石具有高微孔性,BET比表面积分别为508和578 m²/g。由于成功的表面改性,微孔的甲苯吸附性优于其他几种多孔硅材料。因此,这种方法提供了一种构建新型微孔纳米复合材料的新途径,是提高分离和催化应用中选择性和活性的关键。