摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4,4'-bis(ethoxy dimethyl silyl)biphenyl | 201603-69-2

中文名称
——
中文别名
——
英文名称
4,4'-bis(ethoxy dimethyl silyl)biphenyl
英文别名
4,4'-Bis(dimethylethoxysilyl)biphenyl;ethoxy-[4-[4-[ethoxy(dimethyl)silyl]phenyl]phenyl]-dimethylsilane
4,4'-bis(ethoxy dimethyl silyl)biphenyl化学式
CAS
201603-69-2
化学式
C20H30O2Si2
mdl
——
分子量
358.628
InChiKey
WBXHBWCRAYPDEY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    168-169°C / 0.1
  • 密度:
    0.98±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.25
  • 重原子数:
    24
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.4
  • 拓扑面积:
    18.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    4,4'-bis(ethoxy dimethyl silyl)biphenyl正丁基锂乙酰氯 作用下, 反应 6.5h, 生成 [4-[4-[Dimethyl(prop-1-ynyl)silyl]phenyl]phenyl]-dimethyl-prop-1-ynylsilane
    参考文献:
    名称:
    Efficient Zirconocene-Coupling of Silicon-Substituted Diynes to Polymers and Macrocycles
    摘要:
    The zirconocene-coupling of diynes with internal silicon substituents, MeC=CMe2SiArSiMe2C=CMe (1: Ar = 1,4-C6H4; 2: Ar = 1,3-C6H4; 3: Ar = 4,4'-C6H4C6H4), generates regiospecific polymers containing zirconacyclopentadiene in the main chain (5-7). These organometallic polymers hydrolyze cleanly to butadienediyl polymers of the type [Me2SiArSiMe2CH=CMeCMe=CH](n) (11-13), and polymer 5 reacts with iodine to give the iodine-containing polymer [1,4-Me2SiC6H4SiMe2C(I)=CMeCMe=C(I)](n) (14). The organometallic polymers undergo facile and high-yield degradations to macrocycles under mild conditions (refluxing tetrahydrofuran solution). The size and shape of the resulting macrocycles depend upon the nature of the diyne spacer group. Thus, polymers 5 and 7 containing parallel diyne units convert to the trimeric macrocycles [Me2SiArSiMe2C4Me2ZrCp2](3) (15: Ar = 1,4-C6H4; 24: Ar = 4,4'-C6H4C6H4), while polymer 6 gives the dimeric macrocycle [1,3-Me2SiC6H4SiMe2C4Me2ZrCp2](2) (18). The dimeric macrocycle [Me2SiC6H4-SiMe2C6H4SiMe2C4Me2ZrCp2](2) (20) was obtained directly from the zirconocene coupling of Me2Si[(1,4-C6H4)SiMe2(C=CMe)](2) (4) by heating the reaction mixture to reflux. In. similar manner, the diyne Me2Si(C=CMe)(2) was converted in high yield to the hexameric macrocycle [Me2SiC4Me2ZrCp2](6) (22). The macrocycles 15, [1,4-Me2SiC6H4SiMe2C4Me2H2](3) (16), and 18 were characterized by single-crystal X-ray crystallography. Molecules of 15 adopt a nearly planar Cg macrocyclic structure with a cavity described by an average transannular Si ... Si distance of 13.2 Angstrom, while the hydrolyzed macrocycle 16 has a chair conformation. This conformation change results from conversion of cis diene groups in the zirconacyclopendiene fragments to trans diene groups in 16. The high-yield formation of macrocycles apparently results from the reversible nature of the alkyne-coupling reaction, which allows for a low-energy pathway to the smallest macrocycle possessing minimal ring strain.
    DOI:
    10.1021/ja973180u
  • 作为产物:
    描述:
    二乙氧基二甲基硅烷4,4'-二溴联苯magnesium 作用下, 以 四氢呋喃 为溶剂, 反应 120.0h, 以27%的产率得到4,4'-bis(ethoxy dimethyl silyl)biphenyl
    参考文献:
    名称:
    Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite
    摘要:
    我们通过对4,4'-联苯桥接的烷氧基硅烷化合物进行烷氧基硅烷化,开发了微孔有机-无机混合纳米复合材料,这些化合物在每个4,4'-联苯单元的末端含有三乙氧基硅基、甲基二乙氧基硅基和二甲基乙氧基硅基团((CH3)n(C2H5O)3-n-Si-C12H8-Si-(OC2H5)3-n(CH3)n,n = 0、1或2,分别简称为BESB(0)、BESB(2)和BESB(4),其中括号中的数字表示这些分子中的甲基数量),并且它们嵌入在结晶层状硅酸盐(搭石)之间。XRD、29Si固态NMR和荧光光谱揭示,BESB分子通过缩合固定化并形成桥接,既与H-搭石,也与BESB分子之间形成相互作用。层间结构表现出不同的分子排列。BESB(0)和BESB(4)分子以单层排列的形式存在,其中BESB(0)分子由于紧密堆积形成与二聚体相似的低聚物种。BESB(2)分子主要在层间形成双层状聚集体。这些结构差异是由于BESB分子的反应性不同,从而控制它们在层间的聚合。最终得到的BESB(0)-和BESB(2)-搭石具有高微孔性,BET比表面积分别为508和578 m²/g。由于成功的表面改性,微孔的甲苯吸附性优于其他几种多孔硅材料。因此,这种方法提供了一种构建新型微孔纳米复合材料的新途径,是提高分离和催化应用中选择性和活性的关键。
    DOI:
    10.1039/b610088k
点击查看最新优质反应信息

文献信息

  • Two-component dental material crosslinking by addition, by way of a hydrosilylation reaction, having rigid and/or voluminous groups as well as great flexural strength
    申请人:Bublewitz Alexander
    公开号:US20050171233A1
    公开(公告)日:2005-08-04
    A two-component dental material addition-crosslinking by way of hydrosilylation contains (a) one or more compounds having vinyl groups in the molecule, (b) at least one organohydrogen silicone compound, and (c) at least one catalyst. The at least one compound (a) and/or the at least one compound (b) includes as the first structural unit, at least one voluminous and/or rigid group, and as the second structural unit, at least two alkenyl-functional or at least two hydrogen-functional silyl units. The second structural unit is bound to the first structural unit (i) directly, (ii) by way of an oxygen atom, (iii) by way of a spacer group, or (iv) by way of a spacer group according to (iii), which is bound to the first structural unit by way of an oxygen atom.
    一种通过氢硅烷化进行加成交联的两组分牙科材料包含(a)分子中含有乙烯基团的一个或多个化合物,(b)至少一种有机氢硅烷化合物,以及(c)至少一种催化剂。至少一种化合物(a)和/或至少一种化合物(b)包括作为第一结构单元的至少一个体积庞大和/或刚性基团,以及作为第二结构单元的至少两个烯基功能或至少两个氢功能硅基团。第二结构单元通过以下方式与第一结构单元结合:(i)直接,(ii)通过氧原子,(iii)通过间隔基团,或(iv)根据(iii)通过间隔基团,该间隔基团通过氧原子与第一结构单元结合。
  • Efficient Zirconocene-Coupling of Silicon-Substituted Diynes to Polymers and Macrocycles
    作者:Shane S. H. Mao、Feng-Quan Liu、T. Don Tilley
    DOI:10.1021/ja973180u
    日期:1998.2.1
    The zirconocene-coupling of diynes with internal silicon substituents, MeC=CMe2SiArSiMe2C=CMe (1: Ar = 1,4-C6H4; 2: Ar = 1,3-C6H4; 3: Ar = 4,4'-C6H4C6H4), generates regiospecific polymers containing zirconacyclopentadiene in the main chain (5-7). These organometallic polymers hydrolyze cleanly to butadienediyl polymers of the type [Me2SiArSiMe2CH=CMeCMe=CH](n) (11-13), and polymer 5 reacts with iodine to give the iodine-containing polymer [1,4-Me2SiC6H4SiMe2C(I)=CMeCMe=C(I)](n) (14). The organometallic polymers undergo facile and high-yield degradations to macrocycles under mild conditions (refluxing tetrahydrofuran solution). The size and shape of the resulting macrocycles depend upon the nature of the diyne spacer group. Thus, polymers 5 and 7 containing parallel diyne units convert to the trimeric macrocycles [Me2SiArSiMe2C4Me2ZrCp2](3) (15: Ar = 1,4-C6H4; 24: Ar = 4,4'-C6H4C6H4), while polymer 6 gives the dimeric macrocycle [1,3-Me2SiC6H4SiMe2C4Me2ZrCp2](2) (18). The dimeric macrocycle [Me2SiC6H4-SiMe2C6H4SiMe2C4Me2ZrCp2](2) (20) was obtained directly from the zirconocene coupling of Me2Si[(1,4-C6H4)SiMe2(C=CMe)](2) (4) by heating the reaction mixture to reflux. In. similar manner, the diyne Me2Si(C=CMe)(2) was converted in high yield to the hexameric macrocycle [Me2SiC4Me2ZrCp2](6) (22). The macrocycles 15, [1,4-Me2SiC6H4SiMe2C4Me2H2](3) (16), and 18 were characterized by single-crystal X-ray crystallography. Molecules of 15 adopt a nearly planar Cg macrocyclic structure with a cavity described by an average transannular Si ... Si distance of 13.2 Angstrom, while the hydrolyzed macrocycle 16 has a chair conformation. This conformation change results from conversion of cis diene groups in the zirconacyclopendiene fragments to trans diene groups in 16. The high-yield formation of macrocycles apparently results from the reversible nature of the alkyne-coupling reaction, which allows for a low-energy pathway to the smallest macrocycle possessing minimal ring strain.
  • Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite
    作者:Ryo Ishii、Takuji Ikeda、Tetsuji Itoh、Takeo Ebina、Toshirou Yokoyama、Takaaki Hanaoka、Fujio Mizukami
    DOI:10.1039/b610088k
    日期:——
    We have developed microporous organic–inorganic hybrid nanocomposites by alkoxysilylation of 4,4′-biphenyl-bridged alkoxysilane compounds, which contain triethoxysilyl, methyldiethoxysilyl, and dimethylethoxysilyl groups at each end of the 4,4′-biphenylene unit ((CH3)n(C2H5O)3−n-Si-C12H8-Si-(OC2H5)3−n(CH3)n, n = 0, 1, or 2, abbreviated as BESB(0), BESB(2), or BESB(4), respectively, where the number in parentheses indicates the number of methyl groups in these molecules), in the interlayer of a crystalline layered silicate, ilerite. XRD, 29Si solid-state NMR and fluorescence spectroscopy revealed the immobilization and bridging formation of the BESB molecules between the silicate layers by condensation, not only with H-ilerite, but also with the BESB molecules. The interlayer structures exhibited different molecular arrangements. BESB(0) and BESB(4) molecules are present as a monolayer arrangement in which BESB(0) molecules form the oligomeric species caused by close stacking like a dimer. BESB(2) molecules form mainly bilayer-like aggregates in the interlayer. The structural differences are caused by the different reactivities of the BESB molecules, which control their polymerization in the interlayer. The resultant BESB(0)- and BESB(2)-ilerite had high microporosity with BET surface areas (508 and 578 m2 g−1 for BESB(0)- and BESB(2)-ilerite, respectively). The micropores showed higher toluene adsorptivity than several other porous silica materials due to the successful surface modification. Consequently, this approach provides a new method for constructing novel microporous nanocomposites, the key to improved selectivity and activity in separation and catalytic applications.
    我们通过对4,4'-联苯桥接的烷氧基硅烷化合物进行烷氧基硅烷化,开发了微孔有机-无机混合纳米复合材料,这些化合物在每个4,4'-联苯单元的末端含有三乙氧基硅基、甲基二乙氧基硅基和二甲基乙氧基硅基团((CH3)n(C2H5O)3-n-Si-C12H8-Si-(OC2H5)3-n(CH3)n,n = 0、1或2,分别简称为BESB(0)、BESB(2)和BESB(4),其中括号中的数字表示这些分子中的甲基数量),并且它们嵌入在结晶层状硅酸盐(搭石)之间。XRD、29Si固态NMR和荧光光谱揭示,BESB分子通过缩合固定化并形成桥接,既与H-搭石,也与BESB分子之间形成相互作用。层间结构表现出不同的分子排列。BESB(0)和BESB(4)分子以单层排列的形式存在,其中BESB(0)分子由于紧密堆积形成与二聚体相似的低聚物种。BESB(2)分子主要在层间形成双层状聚集体。这些结构差异是由于BESB分子的反应性不同,从而控制它们在层间的聚合。最终得到的BESB(0)-和BESB(2)-搭石具有高微孔性,BET比表面积分别为508和578 m²/g。由于成功的表面改性,微孔的甲苯吸附性优于其他几种多孔硅材料。因此,这种方法提供了一种构建新型微孔纳米复合材料的新途径,是提高分离和催化应用中选择性和活性的关键。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐