Synthesis of Both Enantiomers of a P-Chirogenic 1,2-Bisphospholanoethane Ligand via Convergent Routes and Application to Rhodium-Catalyzed Asymmetric Hydrogenation of CI-1008 (Pregabalin)
摘要:
Both enantiomers of a P-chirogenic 1,2-bisphospholanoethane ligand are synthesized via two convergent methods. The first method relies on the chiral alkylation of 1 -((-)-menthoxy)phospholaneborane using a s-BuLi/(-)-sparteine derived chiral base. Only one enantiomer of the catalyst could be synthesized via this method because only one antipode of sparteine is available in nature. The second route relies on the combination of methylphosphine borane and a chiral 1,4-diol. Either enantiomer of the ligand can be synthesized via the second route from the appropriate enantiomer of the 1,4-diol. Asymmetric hydrogenation using catalyst precursor 36 on acetamidoacrylic acid derivatives provided modest to good enantioselectivity (77-95% ee) under low H-2 pressure (30 psi). Asymmetric hydrogenation of Cl-1008 (pregabalin) precursors, 39 and 40, provided good enantioselectivities (92%) at high catalyst loading (1 mol %) and low pressure (30 psi). Enantiomeric excesses dropped sharply with catalyst loading at this pressure. Increasing the pressure of H-2 caused a significant increase in enantiomeric excess for low catalyst loading reactions. Several studies were undertaken to further investigate the enantioselectivity dependence on both pressure and catalyst loading.
Synthesis of Both Enantiomers of a P-Chirogenic 1,2-Bisphospholanoethane Ligand via Convergent Routes and Application to Rhodium-Catalyzed Asymmetric Hydrogenation of CI-1008 (Pregabalin)
摘要:
Both enantiomers of a P-chirogenic 1,2-bisphospholanoethane ligand are synthesized via two convergent methods. The first method relies on the chiral alkylation of 1 -((-)-menthoxy)phospholaneborane using a s-BuLi/(-)-sparteine derived chiral base. Only one enantiomer of the catalyst could be synthesized via this method because only one antipode of sparteine is available in nature. The second route relies on the combination of methylphosphine borane and a chiral 1,4-diol. Either enantiomer of the ligand can be synthesized via the second route from the appropriate enantiomer of the 1,4-diol. Asymmetric hydrogenation using catalyst precursor 36 on acetamidoacrylic acid derivatives provided modest to good enantioselectivity (77-95% ee) under low H-2 pressure (30 psi). Asymmetric hydrogenation of Cl-1008 (pregabalin) precursors, 39 and 40, provided good enantioselectivities (92%) at high catalyst loading (1 mol %) and low pressure (30 psi). Enantiomeric excesses dropped sharply with catalyst loading at this pressure. Increasing the pressure of H-2 caused a significant increase in enantiomeric excess for low catalyst loading reactions. Several studies were undertaken to further investigate the enantioselectivity dependence on both pressure and catalyst loading.
Synthesis of P-chiral bisphospholane ligands and their transition metal complexes for use as asymmetric hydrogenation catalysts
申请人:——
公开号:US20020087017A1
公开(公告)日:2002-07-04
P-chiral bisphospholane ligands and methods for their preparation are described. Use of metal/P-chiral bisphospholane complexes to catalyze asymmetric transformation reactions to provide high enantiomeric excesses of formed compounds is also described.
[DE] VERFAHREN ZUR HERSTELLUNG VON PAN-CDK-INHIBITOREN DER FORMEL (I), SOWIE INTERMEDIATE DER HERSTELLUNG<br/>[EN] PROCESS FOR PREPARING PAN-CDK INHIBITORS OF THE FORMULA (I), AND INTERMEDIATES IN THE PREPARATION<br/>[FR] PROCÉDÉ DE PRODUCTION D'INHIBITEURS PAN-CDK DE LA FORMULE (I), ET INTERMÉDIAIRE DE LA PRODUCTION
申请人:BAYER PHARMA AG
公开号:WO2012038411A1
公开(公告)日:2012-03-29
Die Erfindung betrifft ein neues Verfahren zur Herstellung von pan-CDK-Inhibitoren der Formel (I), sowie Intermediate der Herstellung.