Two dibenzothiophene (DBT)-based phosphine oxide hosts, named 4-diphenylphosphoryl dibenzothiophene (DBTSPO) and 4,6-bis(diphenylphosphoryl) dibenzothiophene (DBTDPO), were prepared by short-axis substitution with the aim to selectively adjust electrical properties. The combined effects of short-axis substitution and the involvement of electron-donating S atom in conjugation effectively suppress the influence of electron-withdrawing diphenylphosphine oxide (DPPO) moieties on the frontier molecular orbitals and the optical properties. Therefore, DBTSPO and DBTDPO have the nearly same hole injection ability and the excited energy levels, while more electron transporting DPPOs and the symmetrical configuration endow DBTDPO with enhanced electron-injecting/transporting ability. As the result, on the basis of this short-axis substitution effect, the selective adjustment of electrical properties was successfully realized. With the high first triplet energy level (T-1) of 290 eV, the suitable energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital of -6.05 and -2.50 eV and the improved carrier -transporting ability, DBTDPO supported its blue- and white emitting phosphorescent organic light emitting diodes as the best low-voltage-driving devices reported so far with the lowest driving voltages of 2.4 V for onset and <3.2 V at 1000 cd m(-2) (for indoor lighting) accompanied with the high efficiencies of >30 lm W-1 and excellent efficiency stability.
Two dibenzothiophene (DBT)-based phosphine oxide hosts, named 4-diphenylphosphoryl dibenzothiophene (DBTSPO) and 4,6-bis(diphenylphosphoryl) dibenzothiophene (DBTDPO), were prepared by short-axis substitution with the aim to selectively adjust electrical properties. The combined effects of short-axis substitution and the involvement of electron-donating S atom in conjugation effectively suppress the influence of electron-withdrawing diphenylphosphine oxide (DPPO) moieties on the frontier molecular orbitals and the optical properties. Therefore, DBTSPO and DBTDPO have the nearly same hole injection ability and the excited energy levels, while more electron transporting DPPOs and the symmetrical configuration endow DBTDPO with enhanced electron-injecting/transporting ability. As the result, on the basis of this short-axis substitution effect, the selective adjustment of electrical properties was successfully realized. With the high first triplet energy level (T-1) of 290 eV, the suitable energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital of -6.05 and -2.50 eV and the improved carrier -transporting ability, DBTDPO supported its blue- and white emitting phosphorescent organic light emitting diodes as the best low-voltage-driving devices reported so far with the lowest driving voltages of 2.4 V for onset and <3.2 V at 1000 cd m(-2) (for indoor lighting) accompanied with the high efficiencies of >30 lm W-1 and excellent efficiency stability.
Dipole-Dipole Interaction Management for Efficient Blue Thermally Activated Delayed Fluorescence Diodes
作者:Chunmiao Han、Zhen Zhang、Dongxue Ding、Hui Xu
DOI:10.1016/j.chempr.2018.06.005
日期:2018.9
Thermally activated delayed fluorescence (TADF) diodes have emerged in recent years. However, blue devices still suffer from low luminance and serious efficiency roll-off, partially because of the utilization of unipolar host materials, which can suppress interaction-induced quenching at the cost of carrier flux unbalance. Herein, we demonstrate that the strong host excited-state dipole field can significantly worsen exciton quenching of blue TADF dopants through hostdopant dipole-dipole interactions. To integrate low excited-state polarity and ambipolar characteristics, we developed a donor-s-acceptor host with dramatically reduced excited-state dipole moments by one order of magnitude to only similar to 2 Debye, which gave rise to state-of-the-art external quantum efficiency beyond 20% from its devices, as well as record-low roll-off. Comparison between the device efficiencies of the hosts and various excited-state polarities revealed that the suppression of dipole-dipole interaction-induced quenching is the primary determinant of device performance for ambipolar blue TADF hosts.