METHODS, COMPOSITIONS AND DEVICES FOR TREATING CANCER WITH ILLUDOFULVENES
申请人:Kelner, Michael
公开号:EP3667323A1
公开(公告)日:2020-06-17
The present invention relates to compositions, methods and devices for treating cancer with illudofulvenes including methods to detect the expression levels of genes encoding biomarkers in cancer patients and to predict the responsiveness of cancer patients to illudofulvenes.
In an embodiment of the invention, a composition for treating a cell population comprises an Affinity Medicant Conjugate (AMC). The medicant moiety can be a toxin including an acylfulvene or a drug moiety. The affinity moiety can be an antibody, a binding protein, a steroid, a lipid, a growth factor, a protein, a peptide or non peptidic. The affinity moiety can be covalently bound to the medicant via a linker. Novel linkers that can be directed to cysteine, arginine or lysine residues based on solution pH allow greater flexibility in preserving and/or generating specific epitopes in the AMC.
In an embodiment of the invention, a composition for treating a cell population comprises an Affinity Medicant Conjugate (AMC). The medicant moiety can be a toxin including an acylfulvene or a drug moiety. The affinity moiety can be an antibody, a binding protein, a steroid, a lipid, a growth factor, a protein, a peptide or non peptidic. The affinity moiety can be covalently bound to the medicant via a linker. Novel linkers that can be directed to cysteine, arginine or lysine residues based on solution pH allow greater flexibility in preserving and/or generating specific epitopes in the AMC.
In an embodiment of the invention, a composition for treating a cell population comprises an Affinity Medicant Conjugate (AMC). The medicant moiety can be a toxin including an acylfulvene or a drug moiety. The affinity moiety can be an antibody, a binding protein, a steroid, a lipid, a growth factor, a protein, a peptide or non peptidic. The affinity moiety can be covalently bound to the medicant via a linker. Novel linkers that can be directed to cysteine, arginine or lysine residues based on solution pH allow greater flexibility in preserving and/or generating specific epitopes in the AMC.