作者:William H. Pearson、Hiroyuki Suga
DOI:10.1021/jo981695d
日期:1998.12.1
Several 1,4-disubstituted quinolizidines have been isolated in minute quantities from the skin of certain poisonous frogs and toads. The structures of these alkaloids have been proposed mainly on the basis of MS and IR spectroscopic data. We report the first total synthesis of a naturally occurring alkaloid of this type, quinolizidine 217A. After examination of several azide-based routes, the cyclization of an azide onto an ester-bearing alkene provided a 3,4,5,6-tetrahydropyridine that was reduced in a stereoselective fashion to produce a cis-2,6-disubstituted piperidine (25 --> 31 --> 32). Transformation of 32 into quinolizidine 217A (2) and its C(1) epimer (41) were accomplished in a straightforward fashion. Synthetic quinolizidine 217A was found to be identical to the natural alkaloid, confirming its stereostructure. Compound 41 has the same stereostructure as that proposed for the alkaloid quinolizidine 207I, a compound whose configuration was recently revised as a result of synthetic studies by Momose et al., who synthesized a 1,4-disubstituted quinolizidine with the configuration previously proposed for quinolizidine 207I and found the synthetic material to be epimeric with the natural material. Compound 41 should provide a useful point of comparison for future studies on the stereostructure of natural or synthetic quinolizidine 207I.