Structure−Activity Relationship of 4(5)-Aryl-2-amino-1<i>H</i>-imidazoles, <i>N</i>1-Substituted 2-Aminoimidazoles and Imidazo[1,2-<i>a</i>]pyrimidinium Salts as Inhibitors of Biofilm Formation by <i>Salmonella</i> Typhimurium and <i>Pseudomonas aeruginosa</i>
作者:Hans P. L. Steenackers、Denis S. Ermolat’ev、Bharat Savaliya、Ami De Weerdt、David De Coster、Anamik Shah、Erik V. Van der Eycken、Dirk E. De Vos、Jozef Vanderleyden、Sigrid C. J. De Keersmaecker
DOI:10.1021/jm1011148
日期:2011.1.27
A library of 112 4(5)-aryl-2-amino-1H-imidazoles, 4,5-diphenyl-2-amino-1H-imidazoles, and N1-substituted 4(5)-phenyl-2-aminoimidazoles was synthesized and tested for the antagonistic effect against biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa. The substitution pattern of the 4(5)phenyl group and the nature of the N1-substituent were found to have a major effect on the biofilm inhibitory activity. The most active compounds of this series were shown to inhibit the biofilm formation at low micromolar concentrations. Furthermore, the influence of 6 imidazo[1,2-a]pyrimidines and 18 imidazo[1,2-a]pyrimidinium salts on the biofilm formation was tested. These compounds are the chemical precursors of the 2-aminoimidazoles in our synthesis pathway. A good correlation was found between the activity of the imidazo[1,2-a]pyrimidinium salts and their corresponding 2-aminoimidazoles, supporting the hypothesis that the imidazo[1,2-a]pyrimidinium salts are possibly cleaved by cellular nucleophiles to form the active 2-aminoimidazoles. However, the imidazo[1,2-a]pyrimidines did not show any biofilm inhibitory activity, indicating that these molecules are not susceptible to in situ degradation to 2-aminoimidazoles. Finally, we demonstrated the lack of biofilm inhibitory activity of an array of 37 2N-substituted 2-aminopyrimidines, which are the chemical precursors of the imidazo[1,2-a]pyrimidinium salts in our synthesis pathway.