N-Substituted <i>cis-</i>4a-(3-Hydroxyphenyl)-8a-methyloctahydroisoquinolines Are Opioid Receptor Pure Antagonists
作者:F. Ivy Carroll、Sachin Chaudhari、James B. Thomas、S. Wayne Mascarella、Kenneth M. Gigstad、Jeffrey Deschamps、Hernán A. Navarro
DOI:10.1021/jm058261c
日期:2005.12.1
N-Substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines (6a-g) were designed and synthesized as conformationally constrained analogues of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4) class of opioid receptor pure antagonists. The methyloctabydroisoquinolines 6a-g can exist in conformations where the 3-hydroxyphenyl substituent is either axial or equatorial, similar to the (3-hydroxyphenyl)piperidines 4. The 3-hydroxyphenyl equatorial conformation is responsible for the antagonist activity observed in the (3-hydroxyphenyl)piperidine antagonists. Single-crystal X-ray analysis of 6a shows that the 3-hydroxyphenyl equatorial conformation is favored in the solid state. Molecular modeling studies also suggest that the equatorial conformation has lower potential energy relative to that of the axial conformation. Evaluation of 6a-g in the [S-35]GTP-gamma-S in vitro functional assay showed that they were opioid receptor pure antagonists. N-[4a-(3-Hydroxyphenyl)-8a-methyl-2-(3-phenylpropyl)octahydroisoquinoline-6-yl]-3-(piperidin-1-yl)propionamide (6d) with a K-e of 0.27 nM at the kappa opioid receptor with 154- and 46-fold selectivity relative to those of the mu and 6 receptors, respectively, possessed the best combination Of K potency and selectivity.