Increased activity of apoptosis signal-regulating kinase 1 (ASK1) is associated with a number of human disorders and the inhibitors of ASK1 may become important compounds for pharmaceutical application. Here we report novel ASK1 inhibitor scaffold, namely 5-(5-Phenyl-furan-2-ylmethylene)-2-thioxo-thiazolidin-4-one, that has been identified using virtual screening and biochemical tests. A series of derivatives has been synthesized and evaluated in vitro towards human protein kinase ASK1. It was revealed that the most active compounds 4-((5Z)-5-{[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)butanoic acid and 6-((5Z)-5-{[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)hexanoic acid inhibit ASK1 with IC50 of 0.2 mu M. Structure activity relationships of 33 derivatives of 5-(5-Phenyl-furan-2-ylmethylene)-2-thioxo-thiazolidin-4-one have been studied and binding mode of this chemical class has been predicted. (C) 2012 Elsevier Masson SAS. All rights reserved.
RADIOACTIVE IODINE LABELED ORGANIC COMPOUND OR SALT THEREOF
申请人:Saji Hideo
公开号:US20120330024A1
公开(公告)日:2012-12-27
The present invention is a compound represented by the following formula (1) or a salt thereof. Furthermore, the present invention is an imaging agent used for imaging a tau protein, the imaging agent containing a compound represented by the formula (1) below or a salt thereof. In the formula (1), R
3
is a radioactive iodine.
作者:Galyna P. Volynets、Volodymyr G. Bdzhola、Andriy G. Golub、Anatoliy R. Synyugin、Maksym A. Chekanov、Oleksandr P. Kukharenko、Sergiy M. Yarmoluk
DOI:10.1016/j.ejmech.2012.09.022
日期:2013.3
Increased activity of apoptosis signal-regulating kinase 1 (ASK1) is associated with a number of human disorders and the inhibitors of ASK1 may become important compounds for pharmaceutical application. Here we report novel ASK1 inhibitor scaffold, namely 5-(5-Phenyl-furan-2-ylmethylene)-2-thioxo-thiazolidin-4-one, that has been identified using virtual screening and biochemical tests. A series of derivatives has been synthesized and evaluated in vitro towards human protein kinase ASK1. It was revealed that the most active compounds 4-((5Z)-5-[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)butanoic acid and 6-((5Z)-5-[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)hexanoic acid inhibit ASK1 with IC50 of 0.2 mu M. Structure activity relationships of 33 derivatives of 5-(5-Phenyl-furan-2-ylmethylene)-2-thioxo-thiazolidin-4-one have been studied and binding mode of this chemical class has been predicted. (C) 2012 Elsevier Masson SAS. All rights reserved.