Sequence-Specific Ni(II)-Dependent Peptide Bond Hydrolysis for Protein Engineering. Combinatorial Library Determination of Optimal Sequences
摘要:
Previously we demonstrated for several examples that peptides having a general internal sequence R-N-Yaa-Ser/Thr-Xaa-His-Zaa-R-C (Yaa = Glu or Ala, Xaa = Ala or His, Zaa = Lys, R-N and R-C = any N- and C-terminal amino acid sequence) were hydrolyzed specifically at the Yaa-Ser/Thr peptide bond in the presence of Ni(II) ions at alkaline pH (Krezel, A.; Mylonas, M.; Kopera, E.; Bal, E. Acta Biochim. Polon. 2006, 53, 721-727 and references therein). Hereby we report the synthesis of a combinatorial library of CH3CO-Gly-Ala-(Ser/Thr)-Xaa-His-Zaa-Lys-Phe-Leu-NH2 peptides, where Xaa residues included 17 common alpha-amino acids (except Asp, Glu, and Cys) and Zaa residues included 19 common alpha-amino acids (except Cys). The Ni(II)-dependent hydrolysis at 37 and 45 degrees C of batches of combinatorial peptide mixtures randomized at Zaa was monitored by MALDI-TOF mass spectrometry. The correctness of library-based predictions was confirmed by accurate measurements of hydrolysis rates of seven selected peptides using HPLC. The hydrolysis was strictly limited to the Ala-Ser/Thr bond in all library and individual peptide experiments. The effects of individual residues on hydrolysis rates were quantified and correlated with physical properties of their side chains according to a model of independent contributions of Xaa and Zaa residues. The principal component analysis calculations demonstrated partial molar side chain volume and the free energy of amino acid vaporization for both Xaa and Zaa residues and the amine pK(a) for Zaa residues to be the most significant empirical parameters influencing the hydrolysis rate. Therefore, efficient hydrolysis required bulky and hydrophobic residues at both variable positions Xaa and Zaa, which contributed independently to the hydrolysis rate. This relationship between the peptide sequence and the hydrolysis rate provides a basis for further research, aimed at the elucidation of the reaction mechanism and biotechnological applications of Ni(II)-dependent peptide bond hydrolysis.
Development of a Chemical Methodology for the Preparation of Peptide Thioesters Applicable to Naturally Occurring Peptides Using a Sequential Quadruple Acyl Transfer System
thioesters using innovative methodology that features nickel(II)‐mediated alcoholysis of a naturally occurring peptide sequence, followed by O−N and N−S acyl transfers. This protocol involves sequential quadruple acyl transfer, termed SQAT. Notably, the SQAT system consists of sequential chemical reactions that allow naturally occurring peptide sequences to be converted to thioesters without requiring an
Effect of <scp>d</scp>-Amino Acid Substitutions on Ni(II)-Assisted Peptide Bond Hydrolysis
作者:Hanieh H. Ariani、Agnieszka Polkowska-Nowakowska、Wojciech Bal
DOI:10.1021/ic3022672
日期:2013.3.4
Previously we demonstrated the sequence-specific hydrolysis of the R-1-(Ser/Thr)-peptide bond in Ni(II) complexes of peptides with a general R-1-(Ser/Thr)-Xaa-His-Zaa-R-2 sequence (R-1 and R-2 being any sequences) (Kopera, E.; Krezel, A.; Protas, A. M.; Belczyk, A.; Bonna, A.; Wyslouch-Cieszynska, A.; Poznanski, J.; Bal, W. Inorg. Chem. 2010, 49, 6636). In order to refine our understanding of the mechanism of this reaction and to find ways to accelerate it, we undertook a systematic study of effects of D-amino acid substitutions in the template Ac-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH2 peptide on the hydrolysis rate constants. We found that all stereochemical alterations made around the Ni(II) chelate plane resulted in the decrease of the reaction rate. However, the Ni(II) coordination, a prerequisite to the reaction, was not compromised by these substitutions. We demonstrated that the reaction is only possible when either the side chain of the crucial Ser (or Thr) residue is on the same part of the chelate plane as the next residue in the sequence (Arg), or the side chain of the residue following His (Trp) resides on the opposite side of the plane. The rate of reaction is the fastest when both these conditions are fulfilled. Another novel effect is the strong dependence of the rate of the acyl shift step on the character of the leaving group.