The scope and limitation of the regio- and enantioselective hydrolysis of aliphatic epoxides using Bacillus subtilis epoxide hydrolase, and exploration toward chirally differentiated tris(hydroxymethyl)methanol
摘要:
The substrate specificity of an engineered Bacillus subtilis epoxide hydrolase, which so far had shown high activity and enantioselectivity with 1-benzyloxymethyl-1 -methyloxirane, has been studied by altering the methyl substituent into hydrogen, oxygen-containing functionalities, and unsaturated homologs. High enantioselectivity (E = 44) was observed with 1-benzyloxymethyl-1-vinyloxirane with a proper catalytic activity. The elaboration of the reaction conditions and work-up procedures enabled a preparative-scale kinetic resolution, to give (R)-2-benzyloxymethyl-3-butene-1,2-diol and its antipodal (R)-epoxide in high ees. (C) 2010 Elsevier Ltd. All rights reserved.
The scope and limitation of the regio- and enantioselective hydrolysis of aliphatic epoxides using Bacillus subtilis epoxide hydrolase, and exploration toward chirally differentiated tris(hydroxymethyl)methanol
摘要:
The substrate specificity of an engineered Bacillus subtilis epoxide hydrolase, which so far had shown high activity and enantioselectivity with 1-benzyloxymethyl-1 -methyloxirane, has been studied by altering the methyl substituent into hydrogen, oxygen-containing functionalities, and unsaturated homologs. High enantioselectivity (E = 44) was observed with 1-benzyloxymethyl-1-vinyloxirane with a proper catalytic activity. The elaboration of the reaction conditions and work-up procedures enabled a preparative-scale kinetic resolution, to give (R)-2-benzyloxymethyl-3-butene-1,2-diol and its antipodal (R)-epoxide in high ees. (C) 2010 Elsevier Ltd. All rights reserved.
There is provided a method for forming a pattern comprising two regions of different refractive indices easily, that is, a method comprising the steps of forming a pattern having a water-shedding oil-shedding region by use of a radiation sensitive resin composition and coating the pattern with a high refractive index resin solution using a solvent having low wettability to the water-shedding oil-shedding region so as to form two regions of different refractive indices.
The scope and limitation of the regio- and enantioselective hydrolysis of aliphatic epoxides using Bacillus subtilis epoxide hydrolase, and exploration toward chirally differentiated tris(hydroxymethyl)methanol
The substrate specificity of an engineered Bacillus subtilis epoxide hydrolase, which so far had shown high activity and enantioselectivity with 1-benzyloxymethyl-1 -methyloxirane, has been studied by altering the methyl substituent into hydrogen, oxygen-containing functionalities, and unsaturated homologs. High enantioselectivity (E = 44) was observed with 1-benzyloxymethyl-1-vinyloxirane with a proper catalytic activity. The elaboration of the reaction conditions and work-up procedures enabled a preparative-scale kinetic resolution, to give (R)-2-benzyloxymethyl-3-butene-1,2-diol and its antipodal (R)-epoxide in high ees. (C) 2010 Elsevier Ltd. All rights reserved.