Ebsulfur as a potent scaffold for inhibition and labelling of New Delhi metallo-β-lactamase-1 in vitro and in vivo
作者:Jianpeng Su、Jiayun Liu、Cheng Chen、Yuejuan Zhang、Kewu Yang
DOI:10.1016/j.bioorg.2018.11.035
日期:2019.3
The superbug infection caused by New Delhi metallo-beta-lactamase (NDM-1) has grown into an emerging threat, labelling and inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. Here, we report a potent covalent scaffold, ebsulfur, for targeting the protein in vitro and in vivo. Enzymatic kinetic study indicated that eighteen ebsulfurs gained except 1a-b and 1f inhibited NDM-1, exhibiting an IC50 value ranging of 0.16-9 mu M, and 1g was found to be the best, dose- and time-dependent inhibitor with an IC50 of 0.16 mu M. Also, these ebsulfurs effectively restored the antibacterial activity of cefazolin against E. coli expressing NDM-1, and the best effect was observed to be from 1g, 1i and 1n, resulting in an 256-fold reduction in MIC of the antibiotic at a dose of 16 mu g/mL. The equilibrium dialysis study implied that the ebsulfur disrupted the coordination of one Zn(II) ion at active site of NDM-1. Labelling of NDM-1 using a constructed fluorescent ebsulfur Ebs-R suggested that the inhibitor covalently bound to the target through SDS-PAGE analysis in vitro. Also, labelling NDM-1 in living E. coli cells with Ebs-R by confocal microscopic imaging showed the real-time distribution change process of intracellular recombinant protein NDM-1. Moreover, the cytotoxicity of these ebsulfurs against L929 mouse fibroblastic cells was tested, and their capability to restore antibacterial activity of antibiotic against clinical strains E. coli ECO8 producing NDM-1 was determined. The ebsulfur scaffold proposed here is valuable for development of the covalent irreversible inhibitors of NDM-1, and also for labelling the target in vitro and in vivo.