Asymmetric baker’s yeast reductions of bridgehead-substituted bicyclo[2.2.2]octane-2,6-dione derivatives followed by conversion into catalytically active BODOLs for the diethylzinc addition to benzaldehyde
摘要:
4-Substituted bicyclo[2.2.2]octane-2,6-diones have been synthesized and tested as substrates in the enantioselective reduction with baker's yeast to give the corresponding hydroxy ketones. It was found that the derivative bearing a TIPSO group at the 4-position was not reduced at all while that with a TBDMSO group gave 87% yield and 46% ee. Other 4-oxy functionalized derivatives were reduced with varying yields (36-87%) and ees (10-82%). The best result was obtained for the 4-Oallyl derivative (80% yield, 82% ee). The hydroxy ketones carrying the benzyloxy and allyloxy groups at the 4-position were converted into the corresponding BODOLs, which were tested as catalysts in the diethylzinc addition to benzaldehyde. In this reaction the ees were 90% and 89%, respectively, which showed that BODOLs substituted at the 4-position are essentially as good catalysts in this reaction as those bearing a hydrogen. (C) 2010 Elsevier Ltd. All rights reserved.
Asymmetric baker’s yeast reductions of bridgehead-substituted bicyclo[2.2.2]octane-2,6-dione derivatives followed by conversion into catalytically active BODOLs for the diethylzinc addition to benzaldehyde
摘要:
4-Substituted bicyclo[2.2.2]octane-2,6-diones have been synthesized and tested as substrates in the enantioselective reduction with baker's yeast to give the corresponding hydroxy ketones. It was found that the derivative bearing a TIPSO group at the 4-position was not reduced at all while that with a TBDMSO group gave 87% yield and 46% ee. Other 4-oxy functionalized derivatives were reduced with varying yields (36-87%) and ees (10-82%). The best result was obtained for the 4-Oallyl derivative (80% yield, 82% ee). The hydroxy ketones carrying the benzyloxy and allyloxy groups at the 4-position were converted into the corresponding BODOLs, which were tested as catalysts in the diethylzinc addition to benzaldehyde. In this reaction the ees were 90% and 89%, respectively, which showed that BODOLs substituted at the 4-position are essentially as good catalysts in this reaction as those bearing a hydrogen. (C) 2010 Elsevier Ltd. All rights reserved.
Rh(I)-Catalyzed [5 + 1] Cycloaddition of Vinylcyclopropanes and CO for the Synthesis of α,β- and β,γ-Cyclohexenones
作者:Guo-Jie Jiang、Xu-Fei Fu、Qian Li、Zhi-Xiang Yu
DOI:10.1021/ol2031526
日期:2012.2.3
A cationic Rh(I)-catalyzed [5 + 1] cycloaddition of vinylcyclopropanes and CO has been developed, affording either beta,gamma-cyclohexenones as major products or alpha,beta-cyclohexenones exclusively, under different reaction conditions.
A general method for the preparation of .gamma.-substituted cyclohexenals and cycloheptenals