Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells
摘要:
We report a quantitative structure activity relationship study of a new class of pyrazole-pyridine copper complexes that establishes a clear correlation between the ability to promote copper accumulation and cytotoxicity. Intracellular metal accumulation is maximized when ligand lipophilicity allows the complex to rapidly cross the membrane. Copper and ligand follow different uptake kinetics and reach different intracellular equilibrium concentrations. These results support a model in which the ligand acts as an ionophore for the metal ion, cycling between intra- and extracellular compartments as dissociated or complexed entities. When treating cancer cells with structurally unrelated disulfiram and pyrazole-pyridine copper complexes, as well as with inorganic copper, the same morphological and molecular changes were reproduced, indicating that copper overload is responsible for the cytotoxic effects. Copper-based treatments drive sensitive cancer cells toward paraptotic cell death, a process hallmarked by endoplasmic reticulum stress and massive vacuolization in the absence of apoptotic features. A lack of caspase activation, as observed in copper-treated dying cells, is a consequence of metal-mediated inhibition of caspase-3. Thus, copper acts simultaneously as an endoplasmic reticulum (ER) stress inducer and a caspase-3 inhibitor, forcing the cell into caspase-independent paraptotic death. The establishment of a mechanism of action common to different copper binding agents provides a rationale for the exploitation of copper toxicity as an anticancer tool.
Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells
摘要:
We report a quantitative structure activity relationship study of a new class of pyrazole-pyridine copper complexes that establishes a clear correlation between the ability to promote copper accumulation and cytotoxicity. Intracellular metal accumulation is maximized when ligand lipophilicity allows the complex to rapidly cross the membrane. Copper and ligand follow different uptake kinetics and reach different intracellular equilibrium concentrations. These results support a model in which the ligand acts as an ionophore for the metal ion, cycling between intra- and extracellular compartments as dissociated or complexed entities. When treating cancer cells with structurally unrelated disulfiram and pyrazole-pyridine copper complexes, as well as with inorganic copper, the same morphological and molecular changes were reproduced, indicating that copper overload is responsible for the cytotoxic effects. Copper-based treatments drive sensitive cancer cells toward paraptotic cell death, a process hallmarked by endoplasmic reticulum stress and massive vacuolization in the absence of apoptotic features. A lack of caspase activation, as observed in copper-treated dying cells, is a consequence of metal-mediated inhibition of caspase-3. Thus, copper acts simultaneously as an endoplasmic reticulum (ER) stress inducer and a caspase-3 inhibitor, forcing the cell into caspase-independent paraptotic death. The establishment of a mechanism of action common to different copper binding agents provides a rationale for the exploitation of copper toxicity as an anticancer tool.
Structural Variability in Ag(I) and Cu(I) Coordination Polymers with Thioether-Functionalized Bis(pyrazolyl)methane Ligands
作者:Irene Bassanetti、Luciano Marchiò
DOI:10.1021/ic201338w
日期:2011.11.7
We present here two ligand classes based on a bis(pyrazolyl)methane scaffold functionalized with a rigid (-Ph-S-Ph) or flexible (-CH(2)-S-Ph) thioether function: L(R)PhS (R = H, Me) and L(R)CH(2)S (R = H, Me, iPr). The X-ray molecular structures of Ag(I) and Cu(I) binary complexes with L(R)PhS or L(R)CH(2)S using different types of counterions (BF(4)(-), PF(6)(-), and CF(3)SO(3)(-)) are reported. In these complexes, the ligands are N(2) bound on a metal center and bridge on a second metal with the thioether group. In contrast, when using triphenylphosphine (PPh(3)) as an ancillary ligand, mononuclear ternary complexes [M(L)PPh3] (M = Cu(I), Ag(I); L = L(R)PhS, L(R)CH(2)S) are formed. In these complexes, the more flexible ligand type, L(R)CH(2)S, is able to provide the N(2)S chelation, whereas the more rigid L(R)PhS ligand class is capable of chelating only N(2) because the thioether function preorganized, as it did in the coordination polymers, to point away from the metal center. Rigid potential-energy surface scans were performed by means of density functional theory (DFT) calculations (B3LYP/6-31+G) on the two representative ligands, L(H)PhS and L(H)CH(2)S. The surface scans proved that the thioether function is preferably oriented on the opposite side of the bispyrazole N(2) chelate system. These results confirm that both ligand classes are suitable components for the construction of coordination polymers. Nevertheless, the methylene group that acts as a spacer in L(H)CH(2)S imparts an inherent flexibility to this ligand class so that the conformation responsible for the N(2)S chelation is energetically accessible.
Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells
We report a quantitative structure activity relationship study of a new class of pyrazole-pyridine copper complexes that establishes a clear correlation between the ability to promote copper accumulation and cytotoxicity. Intracellular metal accumulation is maximized when ligand lipophilicity allows the complex to rapidly cross the membrane. Copper and ligand follow different uptake kinetics and reach different intracellular equilibrium concentrations. These results support a model in which the ligand acts as an ionophore for the metal ion, cycling between intra- and extracellular compartments as dissociated or complexed entities. When treating cancer cells with structurally unrelated disulfiram and pyrazole-pyridine copper complexes, as well as with inorganic copper, the same morphological and molecular changes were reproduced, indicating that copper overload is responsible for the cytotoxic effects. Copper-based treatments drive sensitive cancer cells toward paraptotic cell death, a process hallmarked by endoplasmic reticulum stress and massive vacuolization in the absence of apoptotic features. A lack of caspase activation, as observed in copper-treated dying cells, is a consequence of metal-mediated inhibition of caspase-3. Thus, copper acts simultaneously as an endoplasmic reticulum (ER) stress inducer and a caspase-3 inhibitor, forcing the cell into caspase-independent paraptotic death. The establishment of a mechanism of action common to different copper binding agents provides a rationale for the exploitation of copper toxicity as an anticancer tool.