N-(3-acyloxy-2-benzylpropyl)-N′-(4-hydroxy-3-methoxybenzyl)thiourea derivatives as potent vanilloid receptor agonists and analgesics
摘要:
A series of N-(3-acyloxy-2-benzylpropyl)-N'-(4-hydroxy-3-methoxybenzyl)thioura derivatives were investigated as vanilloid receptor ligands in an effort to discover a novel class of analgesics. The proposed pharmacophore model of resiniferatoxin, which includes the C-20-homovanillic moiety, the C-3-carbonyl and the orthoester phenyl ring as key pharmacophoric groups, was utilized as a guide for drug design. The compounds were synthesized after several steps from diethylmalonate and evaluated in vitro in a receptor binding assay and in a capsaicin-activated channel assay. Additional evaluation of analgesic activity, anti-inflammatory activity and pungency was conducted in animal models by the writhing test, the ear edema assay, and the eye-wiping test, respectively. Among the new compounds, 23 and 28 were found to be the most potent receptor agonists of the series with K-i values of 19 nM and 11 nM, respectively. Their strong in vitro potencies were also reflected by an excellent analgesic profile in animal tests with ED50 values of 0.5 mug/kg for 23 and 1.0 mug/kg for 28. Relative to capsaicin these compounds appear to be ca. 600 and 300 times more potent. Both 23 and 28 were found to be less pungent than capsaicin based on the eye-wiping test. However, the compounds did not show significant anti-inflammatory activity. A molecular modeling study comparing the energy-minimized structures of resiniferatoxin and 35 demonstrated a good correlation in the spatial disposition of the corresponding key pharmacophores. The thioureas described in this investigation, which were designed as simplified resiniferatoxin surrogates, represent a novel class of potent vanilloid receptor agonists endowed with potent analgesic activity and reduced pungency. (C) 2000 Elsevier Science Ltd. All rights reserved.
3-Acyloxy-2-phenalkylpropyl amides and esters of homovanillic acid as novel vanilloid receptor agonists
摘要:
A series of 3-acyloxy-2-phenalkylpropyl amides and esters of homovanillic acid were designed and synthesized as vanilloid receptor agonists containing the three principal pharmacophores of resiniferatoxin. Amide analogues 23, 5 and II were found to be potent agonists in vanilloid receptor assay both for ligand binding and for activation. (C) 1999 Elsevier Science Ltd. All rights reserved.
peptidomimetics serve as biologically active compounds or as intermediates for other peptidyl isosteres. The N-terminal side of the C=C bond could be easily prepared in an opticallypure form from α-amino acids. Synthesis of C-terminal building blocks in an opticallypure form is more challenging. We developed a chemoenzymatic stereoselective approach to such optically active C-terminal building blocks to
肽基烯烃肽模拟物用作生物活性化合物或用作其他肽基等排体的中间体。C=C 键的 N 端侧可以很容易地从 α-氨基酸以光学纯的形式制备。以光学纯形式合成 C 端结构单元更具挑战性。我们开发了一种化学酶立体选择性方法,用于通过各种反应组装成肽基烯烃的光学活性 C 端结构单元。它们包括亲电子醛和亲核砜、鏻盐、膦酸盐和二硒化物。前手性二酯到相应羟基酯的关键酶水解引入了光学活性。随后化学反应的顺序,无论是保护-水解-功能化还是功能化-水解-保护,
Optically Active γ-Hydroxy Sulfone Julia Reagents for the Synthesis of Peptidyl Olefin Peptidomimetics
peptidomimetics serve as biologically active compounds or as intermediates for other peptidyl isosteres. We developed a chemoenzymatic stereoselective approach to opticallyactive γ-hydroxy sulfones to be assembled into peptidyl olefins by the Julia reaction. Key enzymatic hydrolysis of prochiral diesters to the corresponding hydroxy esters introduces optical activity. The sequence of the subsequent
SULFONIC ESTER DERIVATIVES, PROCESS FOR PREPARING THE SAME, AND USE THEREOF
申请人:KANEKA CORPORATION
公开号:EP0916654A1
公开(公告)日:1999-05-19
Novel and useful optical active 2-aralkyl-3-sulfonyloxy-1-propanol and 2-aralkyl-3-sulfonyloxypropionic acid are provided by using an optical active 2-aralkyl-3-acyloxy-1-propanol as a starting material. Furthermore, an optical active 2-aralkyl-3-thiopropionic acid, which is an important intermediate of enkephalinase inhibitor, is provided. According to the present invention, industrially useful optical active sulfonic acid ester derivatives can be provided.