摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(3-Aminophenyl)-(2,4-dimethoxyphenyl)methanone | 99642-16-7

中文名称
——
中文别名
——
英文名称
(3-Aminophenyl)-(2,4-dimethoxyphenyl)methanone
英文别名
——
(3-Aminophenyl)-(2,4-dimethoxyphenyl)methanone化学式
CAS
99642-16-7
化学式
C15H15NO3
mdl
——
分子量
257.289
InChiKey
UGXIRPILYYZXGU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    476.6±45.0 °C(Predicted)
  • 密度:
    1.181±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    19
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.13
  • 拓扑面积:
    61.6
  • 氢给体数:
    1
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Synthesis and antiviral activity of sulfonamidobenzophenone oximes and sulfonamidobenzamides
    摘要:
    To find antiviral agents, various sulfonamidobenzophenone oximes (II) were synthesized from the appropriate m-sulfonamidobenzophenones by hydroxylamine reaction. The reaction products were generally obtained as syn/anti mixtures which were separable by fractional crystallization. The anti isomer had more potent antipoliovirus activity than the syn isomer. Various sulfonamidobenzamides (III) which were structurally related to II were synthesized by the reactions of amino-substituted benzamides with sulfuryl chloride or amines with (aminosulfonyl)benzoyl chloride. Antiviral activity was examined by the plaque-inhibition test. Compounds 5, 36, and 69 exhibited strong antipicornavirus activity. The structure-activity relationships are discussed.
    DOI:
    10.1021/jm00153a018
  • 作为产物:
    参考文献:
    名称:
    Utility of Complementary Molecular Reactivity and Molecular Recognition (CMR/R) Technology and Polymer-Supported Reagents in the Solution-Phase Synthesis of Heterocyclic Carboxamides
    摘要:
    The use of our recently reported chemical library purification strategy in the development of a herbicidal lead, N-(3-benzoylphenyl)-3-(1,1-dimethylethyl)-1-methyl-1H-pyrazole-5-carboxamide (3), is described. The approach applying fundamental properties of complementary molecular reactivity and molecular recognition (CMR/R) as the basis for a general purification strategy was utilized. Polymeric reagents were used in the synthesis to generate reactive species involved in product formation, and complementary molecular reactivity/molecular recognition polymer 8 (CMR/R polymer 8) was used in the solution-phase syntheses of building blocks, primary libraries, and lead refinement libraries. An extension of the CMR/R methodology was applied, utilizing a sequestration enabling reagent (SER), transforming a reactant into an electrophilic species sequestrable by CMR/R polymer 8. This library purification strategy enabled rapid lead generation and lead refinement to afford herbicide 27o. The CMR/R solid-phase purification technique enabled a simple, general, and powerful protocol, eliminating the usual tedious and time-consuming methods required for solution-phase product purification. The result was the synthesis of hundreds of compounds, prepared in a relatively short time, leading to a compound with a 4-fold improvement in herbicidal activity over the initial lead.
    DOI:
    10.1021/jo970571i
点击查看最新优质反应信息

文献信息

  • OGATA, MASARU;MATSUMOTO, HIROSHI;SHIMIZU, SUMIO;KIDA, SHIRO;WADA, TORU;SH+, J. MED. CHEM., 1986, 29, N 3, 417-423
    作者:OGATA, MASARU、MATSUMOTO, HIROSHI、SHIMIZU, SUMIO、KIDA, SHIRO、WADA, TORU、SH+
    DOI:——
    日期:——
  • Synthesis and antiviral activity of sulfonamidobenzophenone oximes and sulfonamidobenzamides
    作者:Masaru Ogata、Hiroshi Matsumoto、Sumio Shimizu、Shiro Kida、Toru Wada、Motoo Shiro、Kosaburo Sato
    DOI:10.1021/jm00153a018
    日期:1986.3
    To find antiviral agents, various sulfonamidobenzophenone oximes (II) were synthesized from the appropriate m-sulfonamidobenzophenones by hydroxylamine reaction. The reaction products were generally obtained as syn/anti mixtures which were separable by fractional crystallization. The anti isomer had more potent antipoliovirus activity than the syn isomer. Various sulfonamidobenzamides (III) which were structurally related to II were synthesized by the reactions of amino-substituted benzamides with sulfuryl chloride or amines with (aminosulfonyl)benzoyl chloride. Antiviral activity was examined by the plaque-inhibition test. Compounds 5, 36, and 69 exhibited strong antipicornavirus activity. The structure-activity relationships are discussed.
  • Utility of Complementary Molecular Reactivity and Molecular Recognition (CMR/R) Technology and Polymer-Supported Reagents in the Solution-Phase Synthesis of Heterocyclic Carboxamides
    作者:John J. Parlow、Deborah A. Mischke、Scott S. Woodard
    DOI:10.1021/jo970571i
    日期:1997.8.1
    The use of our recently reported chemical library purification strategy in the development of a herbicidal lead, N-(3-benzoylphenyl)-3-(1,1-dimethylethyl)-1-methyl-1H-pyrazole-5-carboxamide (3), is described. The approach applying fundamental properties of complementary molecular reactivity and molecular recognition (CMR/R) as the basis for a general purification strategy was utilized. Polymeric reagents were used in the synthesis to generate reactive species involved in product formation, and complementary molecular reactivity/molecular recognition polymer 8 (CMR/R polymer 8) was used in the solution-phase syntheses of building blocks, primary libraries, and lead refinement libraries. An extension of the CMR/R methodology was applied, utilizing a sequestration enabling reagent (SER), transforming a reactant into an electrophilic species sequestrable by CMR/R polymer 8. This library purification strategy enabled rapid lead generation and lead refinement to afford herbicide 27o. The CMR/R solid-phase purification technique enabled a simple, general, and powerful protocol, eliminating the usual tedious and time-consuming methods required for solution-phase product purification. The result was the synthesis of hundreds of compounds, prepared in a relatively short time, leading to a compound with a 4-fold improvement in herbicidal activity over the initial lead.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐