We report the synthesis and optoelectronic properties of a series of nine triphenylamine derivatives. They were synthesized by Suzuki cross-coupling reactions and characterized by elemental analysis, nuclear magnetic resonance, ultraviolet visible absorption spectra, fluorescence spectra, and cyclic voltammetry. All compounds exhibit reversibly electrochemical behavior. In solid state, compounds 5 and 9 emit near violet blue and compounds 1, 2, 4, 6, 7, and 8 emit deep blue or pure blue and compound 3 emits green. Of all of these compounds, compounds 1, 3, 4, and 8 exhibit high fluorescence quantum yields (44%–68%) with the best coplanarity. Compared with them, compounds 5 and 9 have the lowest fluorescence quantum yields due to the least coplanarity. With the similarity in structure with those reported in literature, these compounds can be potentially useful for blue-emitting, host, and up-converting materials.