摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

diethyl 5-(trimethylsilylethynyl)isophthaloate | 368455-17-8

中文名称
——
中文别名
——
英文名称
diethyl 5-(trimethylsilylethynyl)isophthaloate
英文别名
diethyl-5-(trimethylsilylethynyl)isophthalate;1,3-Diethylcarboxylate-4-(trimethylsilylethynyl)benzene;diethyl 5-(2-trimethylsilylethynyl)benzene-1,3-dicarboxylate
diethyl 5-(trimethylsilylethynyl)isophthaloate化学式
CAS
368455-17-8
化学式
C17H22O4Si
mdl
——
分子量
318.445
InChiKey
ISQUDXCBMPTHPS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    66.2 °C
  • 沸点:
    394.5±42.0 °C(predicted)
  • 密度:
    1.08±0.1 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.27
  • 重原子数:
    22
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.41
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    diethyl 5-(trimethylsilylethynyl)isophthaloate哌啶copper(l) iodide四(三苯基膦)钯乙醇caesium carbonate 作用下, 以 二氯甲烷 为溶剂, 反应 8.0h, 生成 diethyl-5-[(4-[(phenyl)ethynyl]phenyl)ethynyl]isophthaloate
    参考文献:
    名称:
    Tetrahedral Onsager Crosses for Solubility Improvement and Crystallization Bypass
    摘要:
    Pure organic molecules exhibiting a suitable concave rigid shape are expected to give porous glasses in the solid state. Such a feature opens new opportunities to avoid crystallization and to improve molecular solubility in relation to the high internal energy of these solid phases. To quantitatively explore the latter strategy, a series of rigid tetrahedral conjugated molecules nC and the corresponding models nR have been synthesized. Related to the present purpose, several properties have been investigated using UV absorption, steady-state fluorescence emission, differential scanning calorimetry, H-1 NMR translational self-diffusion, magic angle spinning C-13 NMR, and multiple-beam interferometry experiments. The present tetrahedral crosses are up to 8 orders of magnitude more soluble than the corresponding model compounds after normalization to the same molecular length. In addition, they give concentrated monomeric solutions that can be used to cover surfaces with homogeneous films whose thickness goes down to the nanometer range. Such attractive features make cross-like molecular architectures promising for many applications.
    DOI:
    10.1021/ja010019h
  • 作为产物:
    描述:
    参考文献:
    名称:
    Tetrahedral Onsager Crosses for Solubility Improvement and Crystallization Bypass
    摘要:
    Pure organic molecules exhibiting a suitable concave rigid shape are expected to give porous glasses in the solid state. Such a feature opens new opportunities to avoid crystallization and to improve molecular solubility in relation to the high internal energy of these solid phases. To quantitatively explore the latter strategy, a series of rigid tetrahedral conjugated molecules nC and the corresponding models nR have been synthesized. Related to the present purpose, several properties have been investigated using UV absorption, steady-state fluorescence emission, differential scanning calorimetry, H-1 NMR translational self-diffusion, magic angle spinning C-13 NMR, and multiple-beam interferometry experiments. The present tetrahedral crosses are up to 8 orders of magnitude more soluble than the corresponding model compounds after normalization to the same molecular length. In addition, they give concentrated monomeric solutions that can be used to cover surfaces with homogeneous films whose thickness goes down to the nanometer range. Such attractive features make cross-like molecular architectures promising for many applications.
    DOI:
    10.1021/ja010019h
点击查看最新优质反应信息

文献信息

  • A NbO-type metal–organic framework derived from a polyyne-coupled di-isophthalate linker formed in situ
    作者:Dan Zhao、Daqiang Yuan、Andrey Yakovenko、Hong-Cai Zhou
    DOI:10.1039/c002767g
    日期:——
    A NbO-type metal–organic framework, PCN-46, was constructed based on a polyyne-coupled di-isophthalate linker formed in situ. Its lasting porosity was confirmed by N2 adsorption isotherm, and its H2, CH4 and CO2 adsorption capacity was examined at 77 K and 298 K over a wide pressure range (0–110 bar).
    NbO 型金属有机骨架 PCN-46 是基于原位形成的聚炔偶联二间苯二甲酸酯连接基构建的。其持久的孔隙度通过 N2 吸附等温线得到证实,并在 77 K 和 298 K 的宽压力范围(0-110 bar)下检查了其 H2、CH4 和 CO2 吸附能力。
  • 10.1021/jacs.4c01873
    作者:Liu, Haifei、Guo, Chenxing、Li, Luqi、Zhang, Zeyuan、Hou, Yali、Mu, Chaoqun、Hou, Gao-Lei、Zhang, Zhenyi、Wang, Heng、Li, Xiaopeng、Zhang, Mingming
    DOI:10.1021/jacs.4c01873
    日期:——
    fullerenes (C60 or C70) and coronene using its different cavities, allowing distinct allosteric recognition of coronene upon the addition of C60 or C70. Owing to the different binding affinities of the cavities, the metallacage hosts one C60 molecule in the central cavity and two coronene units in the side cavities, while encapsulating two C70 molecules in the side cavities and one coronene molecule in the
    不同的客体分子被不同的蛋白质识别域封装,导致选择性结合、催化和运输。能够选择性地结合不同空腔中的不同客体以模拟蛋白质功能的合成宿主是非常理想的,但也具有挑战性。在这里,我们报告了通过多组分协调驱动的自组装制备的三种梯形三腔金属框架。有趣的是,基于卟啉的金属包合物能够利用其不同的空腔对富勒烯(C 60或C 70 )和晕苯进行杂配封装,从而在添加C 60或C 70后能够对晕苯进行不同的变构识别。由于空腔的结合亲和力不同,金属包合物在中央空腔中容纳1个C 60分子,在侧空腔中容纳2个晕苯单元,同时在侧空腔中封装2个C 70分子,在中央空腔中容纳1个晕苯分子。能够实现杂配封装和变构识别的多腔组件的合理设计将指导具有可调识别特性的先进超分子结构的进一步设计。
  • Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
    作者:Omar K. Farha、Ibrahim Eryazici、Nak Cheon Jeong、Brad G. Hauser、Christopher E. Wilmer、Amy A. Sarjeant、Randall Q. Snurr、SonBinh T. Nguyen、A. Özgür Yazaydın、Joseph T. Hupp
    DOI:10.1021/ja3055639
    日期:2012.9.12
    We have synthesized, characterized, and computationally simulated/validated the behavior of two new metal organic framework (MOF) materials displaying the highest experimental Brunauer-Emmett-Teller (BET) surface areas of any porous materials reported to date (similar to 7000 m(2)/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, is the use of a supercritical CO2 activation technique. Additionally, we demonstrate computationally that by shifting from phenyl groups to "space efficient" acetylene moieties as linker expansion units, the hypothetical maximum surface area for a MOF material is substantially greater than previously envisioned (similar to 14600 m(2)/g (or greater) versus similar to 10500 m(2)/g).
  • Tetrahedral Onsager Crosses for Solubility Improvement and Crystallization Bypass
    作者:Isabelle Aujard、Jean-Pierre Baltaze、Jean-Bernard Baudin、Emmanuelle Cogné、Fabien Ferrage、Ludovic Jullien、Éric Perez、Valéry Prévost、Lin Mao Qian、Odile Ruel
    DOI:10.1021/ja010019h
    日期:2001.8.1
    Pure organic molecules exhibiting a suitable concave rigid shape are expected to give porous glasses in the solid state. Such a feature opens new opportunities to avoid crystallization and to improve molecular solubility in relation to the high internal energy of these solid phases. To quantitatively explore the latter strategy, a series of rigid tetrahedral conjugated molecules nC and the corresponding models nR have been synthesized. Related to the present purpose, several properties have been investigated using UV absorption, steady-state fluorescence emission, differential scanning calorimetry, H-1 NMR translational self-diffusion, magic angle spinning C-13 NMR, and multiple-beam interferometry experiments. The present tetrahedral crosses are up to 8 orders of magnitude more soluble than the corresponding model compounds after normalization to the same molecular length. In addition, they give concentrated monomeric solutions that can be used to cover surfaces with homogeneous films whose thickness goes down to the nanometer range. Such attractive features make cross-like molecular architectures promising for many applications.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐