AbstractThe development of conjugated polymers especially n‐type polymer semiconductors is powered by the design and synthesis of electron‐deficient building blocks. Herein, a strong acceptor building block with di‐metallaaromatic structure was designed and synthesized by connecting two electron‐deficient metallaaromatic units through a π‐conjugated bridge. Then, a double‐monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well‐defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet–visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ–pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH‐HD‐4F non‐fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.
摘要共轭聚合物尤其是 n 型聚合物半导体的发展离不开缺电子结构单元的设计和合成。本文通过π-共轭桥连接两个缺电子的金属芳香族单元,设计并合成了一种具有二金属芳香族结构的强受体构筑嵌段。然后,开发了一种双单体聚合方法,将其插入共轭聚合物支架,生成金属聚合物。分离出的定义明确的模型低聚物表明了聚合物结构。基于核磁共振和紫外可见光谱的动力学研究揭示了聚合过程。有趣的是,所得到的具有 dπ-pπ 共轭的金属聚合物是非常有前途的电子传输层材料,可提高有机太阳能电池的光伏性能,基于 PM6 的功率转换效率可达 18.28%:EH-HD-4F 非富勒烯体系的功率转换效率可达 18.28%。这项工作不仅为构建具有各种官能团的金属芳香族共轭聚合物提供了一条简便的途径,而且首次发现了它们的潜在应用领域。